期刊文献+

自主发育智能机器人体系结构研究 被引量:4

RESEARCH ON THE ARCHITECTURE OF AUTONOMOUS DEVELOPMENTAL ROBOT
下载PDF
导出
摘要 传统的机器人系统范式分类已经无法将新出现的方法和理论纳入其中。为此,首先从认知的角度重新对机器人的范式进行分类。新的范式分类涵盖了传统的系统范式,明确了自主发育在机器人系统范式中的地位。在此基础上,提出了自主发育智能机器人体系结构。该结构只需利用基本的感知能力和行动能力,分别利用感知发育模块、认知发育模块和行为发育模块实现自主感知分类、时空经验知识以及反应式行为的逐层发育。各发育模块之间互相依赖并可以同时学习,具有实时的自主发育能力。 Traditional robot classification paradigm can no longer cover new emerging methods and theories. For this reason, the paper firstly reclassifies the paradigm of robot architecture from the cognitive point of view. New paradigm classification not only covers the traditional paradigm, but also specifies the importance of autonomous development in the paradigm of robot architecture. On this basis, autonomous developmental robot architecture is proposed. The architecture only needs such fundamental capabilities as perception and action in order to achieve the hierarchical development of autonomous perception classification, spatio-temporal experience and reactive behavior with development modules for perception, cognitive and behavior separately. Development modules are interdependent and can learn synchronously so as to possess the capability of real-time autonomous development.
出处 《计算机应用与软件》 CSCD 2011年第11期36-39,115,共5页 Computer Applications and Software
基金 国家自然科学基金项目(60970016) 国家高技术研究发展计划项目(2009AA04Z215) 计算机科学国家重点实验室开放课题(SYSKF1109)
关键词 机器人体系结构 自主发育 自主感知分类 时空经验 Robots architecture Autonomous development Autonomous perception classification Spatio-temporal experience
  • 相关文献

参考文献12

  • 1Murphy R R. Introduction to AI robotics [ M]. MIT Press,2003:57 -63.
  • 2Mataric M J, Cliff D. Challenges in evolving controllers for physical robots[ J]. Robotics and Autonomous Systems,1996,19( 1 ) :67- 83.
  • 3Holland J H. Adaptation in natural and artificial systems[M]. University of Michigan Press, 1975:34 - 45.
  • 4Weng J, Mcclelland J, Pentaland A, et al. Autonomous mental development by robots and animals[J]. Science, 2001,291:599-600.
  • 5Weng J. A theory for mentally developing robots [ C ]//Proceedings of the 2nd Intematinal Conference on Development and Learning, 2002, MIT, Cambridge, MA,2002 : 131 - 140.
  • 6Weng J,Zeng S. A theory of developmental mental architecture and the dav architecture design[J]. Humanoid Robotics, 2005,2(2) :145 - 179.
  • 7Weng J. On developmental mental architectures [ J ]. Neurocomputing, 2007,70(13/15) :2303 -2323.
  • 8Weng J, Zhang Y. Candid eovarianee-free incremental principal component analysis [J]. IEEE Trans Pattern Analysis and Machine Intelligence,2003,25(8) :1034 - 1040.
  • 9Weng J T, Lu W H, Xue X. Multilayer in-place learning networks for modeling functional layers in the laminar cortex[ J]. Neural Networks, 2008,21:150 - 159.
  • 10Weng J, Hwang W. Incremental hierarchical discriminant regression [J]. IEEE Transactions on Neural Networks,2007,18 (2) :397 -415.

同被引文献62

  • 1沈沉,贾孟硕,陈颖,黄少伟,向月.能源互联网数字孪生及其应用[J].全球能源互联网,2020,3(1):1-13. 被引量:75
  • 2高颖,陈东岳,张立明.一种带有实时视觉特征学习的自主发育机器人探索[J].复旦学报(自然科学版),2005,44(6):964-970. 被引量:6
  • 3余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 4日本机器人学会.机器人技术手册[M].宗光华,等译.北京:科学出版社.2007.
  • 5于化龙,朱长明,刘海波,顾国昌,沈晶.发育机器人研究综述[J].智能系统学报,2007,2(4):34-39. 被引量:6
  • 6杜振军,曲道奎,徐方.基于地图学习的移动机器人定位技术研究[c].威海:第八届全国信息获取与处理学术会议论文集,2010.
  • 7Konidaris G, Barto A. Efficient skill learning using ab-straction selection [ C ]// Proceedings of the 21st Interna-tional Joint Conference on Artifical Intelligence. 2009 :1107-1112.
  • 8Rozo L, Jimenez P, Torras C. A robot learning from demon-stration framework to perform force-based manipulation tasks[J]. Intelligent Service Robotics, 2013,6( 1) :33-51.
  • 9Prins N W, Sanchez J C, Prasad A. A confidence metricfor using neurobiological feedback in actor-critic reinforce-ment learning based brain-machine interfaces [ J ]. Fron-tiers in Neuroscience, 2014,8 : 111.
  • 10Jandhyala V,Fotopoulos S,Macneill I, et al. Inference forsingle and multiple change-points in time series[ J]. Jour-nal of Time Series Analysis, 2013,34(4) :423-446.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部