期刊文献+

语义关系算子在群智能算法中的研究 被引量:1

STUDY ON SEMANTIC RELATION OPERATORS IN SWARM INTELLIGENCE ALGORITHM
下载PDF
导出
摘要 在传统群智能算法框架的基础上,提出基于语义关系算子的群智能算法。与传统的群智能算法不同,该算法采用了一个语义关系算子进行关键参数的更新操作,并基于群体的历史状态对语义关系可进行更新。在语义关系库更新过程中,通过分析群体之前的历史状态信息,进行基于本体的语义关系挖掘,从而找到全局语义关系。以粒子群算法解组合优化问题为例,提出了基于语义关系算子的蚁群算法和粒子群算法。实验表明,基于该算子的群智能算法寻优能力有了一定程度的改进。 Built on the traditional swarm intelligence algorithm framework, a semantic relation operator based swarm intelligence algorithm is proposed. In contrast with the tradition swarm intelligence algorithm, the proposed one uses semantic relation operators to update crucial parameters. In addition, based on swarm historical status, the semantic relation can be updated too. During semantic relation library update, through analyzing swarm's previous historical status information, it executes ontology-based semantic relation mining in order to find out global semantic relations. Taking particle swarm algorithm for solving combined optimization problems as example, an ant colony algorithm and a particle swarm algorithm, both of which are based on semantic relation operators, are proposed. Experiment shows there are improvements in optimum searching capability with the operator-based swarm intelligence algorithm.
出处 《计算机应用与软件》 CSCD 2011年第11期211-213,共3页 Computer Applications and Software
基金 吉林省发改委高新技术项目(20106421) 吉林大学研究生创新基金项目(20111064) 吉林省重点科技发展项目(20100309)
关键词 语义关系 群智能算法 粒子群算法 TSP问题 Semantic relation Swarm intelligence algorithm Particle swarm algorithm TSP
  • 相关文献

参考文献12

  • 1Hackwood S, Beni G. Self-organization of Sensors for Swarm Intelligence[ C ]//IEEE International conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 1992:819-829.
  • 2Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. Morgan Kaufmann ,2001.
  • 3Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence from natural to artificial systems[M]. Oxford University Press Inc, 1999:1 -22.
  • 4White T. Swarm Intelligence: A Gentle Introduction With Application [EB/OL]. http://www. see. carleton. ea/netmanage/tony/swarm-presentation/index. htm.
  • 5Flocking and Collective Movement[ M/OL]. http:// www. coro. ealteeh. edu/Courses/EE141/Lecture/WZ/OH_EE141_W2flocking. pdf.
  • 6Fulkerson B. Swarm Intelligence-What Is It and Why Is It Interesting? [EB/OL] http://www. coro. ealteeh. edu/Courses/EE150/Weekl/ OH_WISwarmIntel. Pdf.
  • 7张铃,程军盛.松散的脑袋——群体智能的数学模型[J].模式识别与人工智能,2003,16(1):1-5. 被引量:13
  • 8葛芬,吴宁.基于多种技术的Word设计文档自动生成平台[J].电子科技大学学报,2007,36(2):263-266. 被引量:16
  • 9艾伟,孙四明,张峰.基于本体的Web文本挖掘与信息检索[J].计算机工程,2010,36(22):75-77. 被引量:8
  • 10Arpirez J C, Corcho O, Fernandez-Lopez M, et al. WebODE : A scalable ontological engineering workbench[C]//GilY, Musen M, Shavlik J. Proc. of the K-CAP200! NewYork, ACM Press, 2001:6-13.

二级参考文献17

  • 1陈杰,蒋祖华.领域本体的概念相似度计算[J].计算机工程与应用,2006,42(33):163-166. 被引量:34
  • 2彭京,杨冬青,唐世渭,付艳,蒋汉奎.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363. 被引量:44
  • 3Hotho A, Staab S, Stumme G. Ontologies Improve Text Document Clustering[C]//Proc. of the ICDM'03. [S. l.]: IEEE Press, 2003: 541-544.
  • 4Hotho A, Maedche A, Maedche E, et al. Ontology-based Text Document Clustering[C]//Proc. of the Conference on Intelligent Information Systems. Zakopane, Poland: [s. n.], 2003: 48-54.
  • 5Flocking and Collective Movement. http.//leanair4, mit. edu/docushare/dsegi/ds, py/Get/File - 376/OH_EE141_W2flocking. pdf
  • 6Sugawara K, et al. Foraging Behavior of Multi-Robot System and Emergence of Swarm Intelligence. In: Proc of IEEE International Conference on System, Man, and Cybernetics, 1999, 3:257 - 262
  • 7Fulkerson B. Swarm Intelligence-What Is It and Why Is It Interesting? http://www. micro, caltech, edu/Courses/EE150/dungeon/Weekl/OH W1Swarmlntel. pdf
  • 8White T. Swarm Intelligence: A Gentle Introduction with Application. http://www, sce. carleton, ca/netmanage/tony/swarm - presentation/index. htm
  • 9Marlinoli A, Goodman R, Holland O, et al. Swarm Intelligence. http://www. coro. caltech, edu/Courses/EE141/Lecture/W1/RG_ EE141_Wlintro. pdf
  • 10Ant-Colony Optimization Algorithms(ACO). http://www. coro. caltech, edu/Courses/EE141/Lecture/W8/RG_ EE141 _ W8ACO.pdf

共引文献34

同被引文献10

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部