期刊文献+

基于类均值向量及指数分布的流量行为特征分析 被引量:1

CLASS MEAN VECTOR AND EXPONENTIAL DISTRIBUTION TRAFFIC BEHAVIOR FEATURE ANALYSIS
下载PDF
导出
摘要 引入类均值向量度量及αβ指数分布方法,旨在提高分类正确率的基础上,克服由于抽样而带来的对分类结果的影响。利用流记录NOC_SET为DATASET,并以NETFLOW固有的测度和少量扩展测度为属性,利用所提出的FBRI(Flow behavior identification)属性选择算法对经典的机器学习算法进行流量识别。实验结果表明:任意比例的抽样对于采用FBRI属性选择的评估结果基本一致,并且利用FBRI属性选择算法可以提高应用识别正确率。 The introduction of class mean vector measurements and α β exponential distribution methods is to base on improving the correct classification ratio to overcome the classification result influence brought by sampling. Taking flow records NOC_SET as dataset, in addition taking NETFLOW's inherent measure and a few extended measures as features, the method uses the proposed FBRI ( Flow behavior identification) attribute selection algorithm to identify the traffic for classic machine learning algorithms. Experimental results show that the evaluation results to FBRI feature selections for arbitrary proportions of sampling are of the same ; additionally, by using FBRI feature selection algorithm proposed in the thesis, the correct identification ratio can be improved.
作者 董仕 丁伟
出处 《计算机应用与软件》 CSCD 2011年第11期249-253,共5页 Computer Applications and Software
关键词 类均值向量 αβ指数分布方法 NETFLOW 机器学习 Class mean vectors α β exponential distribution method NETFLOW Machine learning
  • 相关文献

参考文献7

  • 1Karagiannis T, Papagiannaki K, Faloutsos M. BLINC : Multilevel traffic classification in the dark [ C ]//Proc. Of the ACM SIGCOMM. Philadelphia, 2005:229 -240.
  • 2Roughan M, Sen S, Spatscheck O, et al. Class-of-Service mapping for QOS: A statistical signature-based approach to IP traffic classification [C]//Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004 : 135 - 148.
  • 3Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques [ C ]//Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems. Banff, 2005:50 - 60.
  • 4李君,张顺颐,王浩云,李翠莲.基于贝叶斯网络的Peer-to-Peer识别方法[J].应用科学学报,2009,27(2):124-130. 被引量:11
  • 5徐鹏,刘琼,林森.基于支持向量机的Internet流量分类研究[J].计算机研究与发展,2009,46(3):407-414. 被引量:59
  • 6陈小莉.基于信息增益的中文特征提取算法研究[J].重庆大学.
  • 7Kenneth, Ward Church, Patrick Hanks. Word association norms, mutual information and lexicography [ C ]//Proceedings of ACL27, Vancouver, Canada, 1989:76-83.

二级参考文献27

  • 1Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188
  • 2Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54
  • 3Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240
  • 4Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148
  • 5Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324
  • 6Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60
  • 7Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006
  • 8Moore A W, Zuev D, Crogan M. Discriminators for use in flow-based classification, RR-05-13 [R]. London: Queen Mary University of London, 2005
  • 9Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques [M]. 2nd ed. Amsterdam: Elsevier Inc. , 2005
  • 10Chang C C, Lin C J. LIBSVM: A library for support vector machines[EB/OL]. 2001 [2007-08-06]. http://www.csie. ntu. edu. tw/-ejlin/libsvm

共引文献63

同被引文献10

  • 1A W Moore, D Papagiannaki. Toward the Accurate Identification of Network Applications [C]// Proceedings of the Sixth Passive and Active Measurement Workshop (PAM 2005), March 2005.
  • 2Boston, USA: Springer, 2005: 41-54. P Haffner, S Sen, O Spatscheck, D Wang. ACAS: Automated Construction of Application Signatures [C]// SIGCOMM'05 MineNet Workshop, Philadelphia, USA, August 22-26, 2005. USA: ACM, 2005: 197-202.
  • 3B Clarke, E Fokoue, H Zhang. Principles and theory for data mining and machine learning [M]. Germany: Springer Verlag, 2009.
  • 4N Williams, S Zander, G Armitage. A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification [C]// SIGCOMM Computer Communication Review, October 2006. USA: ACM, 2006: 5-16.
  • 5T Karagiannis, K Papagiannaki, M Faloutsos. BLINC: Multilevel Traffic Classification in the Dark [C]// Proc. of the ACM SIGCOMM, Philadelphia, USA. USA: ACM, 2005, 35(4): 229-240.
  • 6A W Moore, D Zuev. Intemet traffic classification using Bayesian analysis techniques [C]// Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, Canada, 2005. USA: ACM, 2008: 50-60.
  • 7L Wei, A W Moore. A Machine Learning Approach for Efficient Traffic Classification [C]// Proc. of the 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Istanbul, Turkey, 2007. USA: IEEE, 2007: 310-317.
  • 8L Yu, H Liu. Feature selection for high-dimensional data: a fast correlation-based filter solution [C]// Proc. of the Twentieth International Conference on Machine Learning (ICML), 2003. Washington DC, USA: AAAI Press, 2003: 856-863.
  • 9K P Murphy. Conjugate Bayesian analysis of the Gaussian distribution [R]// Technical Report, UBC, 2007. Canada: UBC, 2007.
  • 10A W Moore, D Zuev. Discriminators "for use in flow-based classification [R]// Technical Report, Intel Research, Cambridge, 2005. UK: Department of Computer Science~ Queen Mary, University of London, 2005: 1-14.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部