期刊文献+

基于蚁群算法的飞机定检人员均衡配置 被引量:2

People's Balance Distribution in Plane's Periodic Maintenance Based on Ant Colony Optimization
下载PDF
导出
摘要 将蚁群算法(ACO)应用于飞机定检人员均衡配置中。首先,根据均方差指标建立人员均衡配置模型;其次,运用3种精英策略并引入信息素限制和自适应机制对基本蚁群算法进行改进,同时提出一种新变异算子以进一步提高算法的性能;最后,运用改进蚁群算法求解模型。实例仿真表明,改进蚁群算法克服了基本蚁群算法搜索时间长、容易早熟的不足,均衡配置后人员工作时间均方差减小65.90%,验证了ACO在解决飞机定检人员均衡配置问题上的适用性。 Ant Colony Optimization(ACO) is used to balance people's distribution in plane's periodic maintenance.Firstly,the model of people's balance distribution is built according to the mean square deviation target.Secondly,the simple ACO is improved by three elite tactics,pheromone limits and mechanism,a new mutation operator is used to improve its function.At last,the improved ACO is used to solve the model.The simulation results demonstrate that,the improved ACO comes over the deficiency of being long in search and easy to precocity of the simple ACO,after the balanced distribution the mean square deviation is smaller 65.90% than before,and proves that ACO is good for the problem of people's balance distribution in plane's periodic maintenance.
出处 《计算机与现代化》 2011年第11期22-26,共5页 Computer and Modernization
关键词 蚁群算法 飞机定检 人员均衡配置 ACO plane's periodic maintenance people's balance distribution
  • 相关文献

参考文献25

  • 1林志荣,朱鋐道.网络计划中资源均衡优化的研究[J].中国管理科学,2000,8(3):39-43. 被引量:19
  • 2Min Liu, Liu Tao, Zhang Ya-bin, et al. Hybrid genetic algo- rithm based on synthetical level of resource conflict for complex construction project scheduling problem [ C ]// Proceedings of the Fourth International Conference on Ma- chine Learning and Cyber2 Netics. Guangzhou,2005.
  • 3胡江波,李国林,王文刚.基于遗传算法的导弹技术准备资源平衡优化[J].计算机仿真,2009,26(1):185-188. 被引量:10
  • 4Dorigo M ,Caro G Di. Ant algorithms for discrete operimiza- tion [ J ]. Artificial Life, 1999,5 (3) : 137-172.
  • 5Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem[ J]. BioSystems, 1997,43 (2) :73-81.
  • 6Colornii A, et al. Ant system for job-shop scheduling [ J ]. JORBEL, 1994,34 ( 1 ) :39-53.
  • 7Dorigo M, Gambardella L M. Ant colony system:A coopera- tive learning approach to the traveling salesman problem [ J ]. IEEE Transactions on Evolutionary Compution, 1997,1 ( 1 ) :53-66.
  • 8Gutjahr W J. A graph-based ant system and its convergence [ J ]. Future Gener Comput Syst. ,2000,16 (8) : 873-888.
  • 9Stuzle T, Hoos H. The MAX-MIN ant system and lo- calsearch for the traveling salesmanproblem [ C ]//IEEE In- ternational Conference on Evolutionary Computation and Evolutionary Programming. Indianapolis, USA : IEEE Press, 1997:309-314.
  • 10吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247

二级参考文献97

共引文献849

同被引文献23

  • 1吕聪颖,于哲舟,周春光,王康平,庞巍.动态自适应蚁群算法在二次分配问题中的应用[J].吉林大学学报(理学版),2005,43(4):477-480. 被引量:19
  • 2于哲舟,吕聪颖,周春光.二次分配问题的粒子群算法求解[J].计算机工程与应用,2005,41(36):39-41. 被引量:5
  • 3Qi Chengming. An ant colony system hybridized with randomized algorithm for TSP[ C]//Proc. of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. 2007:461-465.
  • 4Socha K, Dorigo M. Ant colony optimization for continuous domains [ J ]. European Journal of Operational Research, 2008,185 (3) : 1155-1173.
  • 5Talbi E-G, Roux O, Fonlupt C, et al. Parallel ant colonies for the quadratic assignment problem [ J ]. Future Genera- tion Computer Systems, 2001,17 (4) :441-449.
  • 6Alfonsas Misevicius. An improved hybrid genetic algorithm: New results for the quadratic assignment problem[ J ]. Knowl- edge-Based Systems, XIM,17(2-4) :65-73.
  • 7Burkard R E, Karisch S, Rendl F. QAPLIB-A quadratic assignment problem library [ J ]. Journal of Global Optimi- zation, 1997,10 (4) :391-403.
  • 8王剑文,戴光明,谢柏桥,张全元.求解TSP问题算法综述[J].计算机工程与科学,2008,30(2):72-74. 被引量:67
  • 9刘立东,蔡淮.融入遗传算法的混合蚁群算法[J].计算机工程与设计,2008,29(5):1248-1249. 被引量:24
  • 10李盼池,李士勇.求解连续空间优化问题的量子蚁群算法[J].控制理论与应用,2008,25(2):237-241. 被引量:47

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部