摘要
为了对路面径流水容许污染总量控制下的交通承载力问题进行探讨,利用神经网络具有的非线性映射能力和遗传算法具有的全局随机搜索能力,结合公路路面径流水质检测数据,提出了一种基于遗传神经网络进行公路交通环境承载力反计算的分析方法,应用该方法可根据路面径流水质污染数据反演出路段交通量大小,并可据此进行交通量与路面径流水质污染的关联分析。该方法为控制路域水体环境污染以及公路项目实施前各类规划直至具体设计等一系列的决策工作提供了明确的依据,文章用一个实例对方法进行了演示。
To discuss traffic capacity for control of total allowable amount of pavement runoff water,non-linearity of neural networks and whole random search capability of genetic algorithm were used,combing with detecting data of road surface runoff to establish an approach for traffic capacity calculation.The approach which may estimate traffic capacity in accordance with pollution data of road surface runoff water and do relational analysis between traffic capacity and runoff water pollution can provide a clear foundation for decision making of controlling water environmental pollution of road district as well as various highway project planning and specific design.
出处
《环境科学与技术》
CAS
CSCD
北大核心
2011年第11期180-184,共5页
Environmental Science & Technology
基金
国家自然科学基金项目资助(50808178)
湖南省教育厅基金(08C099)
教育部道路结构与材料实验室开放基金(KFJ080207)
关键词
公路
交通承载力
神经网络
径流水
遗传算法
road
traffic carrying capacity
neural networks
runoff
genetic algorithms