期刊文献+

变异时序回归GM(1,1)模型 被引量:2

GM(1,1) model of time sequence variation regression
原文传递
导出
摘要 鉴于在GM(1,1)预测模型中,灰参数与背景值导致的GM(1,1)模型的残差,本文提出将残差引入到时序中,对时序进行变异,利用不同的曲线回归方程对变异时序进行估计。基于对不同回归方程估计结果的误差分析,选用最佳的回归方程作为GM(1,1)变异时序预测方程;并将预测结果作为GM(1,1)模型的变量k。实例计算表明,变异时序回归GM(1,1)模型具有较高的模拟及预测精度。 In thepaper, the residual was proposed to introduce to time sequence in view of the residual that was caused by ash parameter and background value in the prediction model of GM ( 1, 1 ) . Time sequence was been taken variation. Different curve regression equations were used to estimate the variation time sequence. It chose the best regression equation as variation time sequence prediction equation of GM ( 1, 1 ) based on the error analysis of the different estimation results. And it used prediction results as variable k of GM ( 1, 1 ) . The example showed that GM ( 1, 1 ) model of time sequence variation regression had high accuracy of simulation and prediction.
出处 《测绘科学》 CSCD 北大核心 2011年第6期184-186,共3页 Science of Surveying and Mapping
基金 国家自然科学基金资助项目(40874010) 江西省自然科学基金资助项目 江西省教育厅科技资助项目 地球空间环境与大地测量教育部重点实验室开放基金资助项目(080101)
关键词 回归分析 时间序列 GM(1 1) PGM(1 1) regression analysis time sequence GM ( 1, 1 ) PGM ( 1, 1 )
  • 相关文献

参考文献7

二级参考文献19

共引文献157

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部