摘要
提出一种求解电场体积分方程的快速算法——快速偶极子法(fast dipole method,FDM),并用其求解了三维非均匀电各向异性介质目标的电磁散射问题。该方法基于等效偶极矩法(equivalent dipole-momentmethod,EDM)和Schaubert-Wilton-Glisson(SWG)基函数。在EDM中,将SWG基函数的体元对用偶极子等效,加快了阻抗矩阵元素的计算速度,但是并不能降低内存需求和矩阵求解时间。快速偶极子法通过简单的泰勒级数展开将阻抗矩阵元素的计算自然地转化为聚集-转移-发散的过程,有效地缓解了矩阵求解时间和内存消耗的矛盾。数值结果表明该方法的高效性以及令人满意的数值精度。
A new method, named fast dipole method (FDM) is presented to solve the volume integral equation (VIE) for electromagnetic scattering from three-dimensional (3D) inhomogeneous anisotropic dielectric targets, which is based on the equivalent dipole-moment method (EDM) and the Schaubert-Wilton-Glisson (SWG) basic function. The EDM speeds up the calculation of impedance elements, which views the SWG basic functions as dipole models, but it cannot save the time of solving matrix equation and memory requirement. Using a simple Taylor~ s series, the FDM transforms the impedance element into an aggregation-translation-disaggregation form naturally, which accelerates the matrix vector products and saves memory. Simulation results demonstrate the efficiency and accuracy of this method.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2011年第11期2368-2371,共4页
Systems Engineering and Electronics
基金
国家自然科学基金(61071019)
江苏省普通高校研究生科研创新计划(CXZZ11_0229)资助课题
关键词
快速偶极子方法
等效偶极矩方法
体积分方程
各向异性介质
电磁散射
fast dipole method (FDM)
equivalent dipole-moment method (EDM)
volume integral equation (VIE)
anisotropic dielectric
electromagnetic scattering