期刊文献+

基于L型阵列MIMO雷达的DOA矩阵方法 被引量:7

DOA matrix method based on MIMO radar with L-shape arrays
下载PDF
导出
摘要 首先提出一种基于波达方向(direction of arrival,DOA)矩阵思想的L型阵列多输入多输出(multi-ple input multiple output,MIMO)雷达二维角度估计方法。通过将L型阵列MIMO雷达所产生的二维虚拟平面阵列划分为两个子阵,并构造估计矩阵以实现二维角度估计。在此基础上,针对角度兼并问题,进一步提出联合对角化DOA矩阵方法。该方法通过构造4个子阵,并采用联合对角化方法估计目标二维角度。该方法在保持原DOA矩阵法无需二维谱峰搜索和参数配对等优点的基础上避免了角度兼并问题,能够减少阵列孔径损失,有效提高阵元利用率和角度估计精度。仿真实验验证了所提方法的有效性。 Firstly, a two-dimensional (2-D) angle estimation method for multiple input multiple output (MIMO) radar with L-shape arrays based on direction of arrival (DOA) matrix is proposed. This method divides the 2-D virtual plane array which is generated by the MIMO radar into two overlapping subarrays, and constructs an estimation matrix to estimate the 2-D angles. To solve the problem of angle annexation, a joint diagonalization DOA matrix method is proposed later. This method generates four subarrays from the 2-D virtual plane array, and uses the joint diagonalization algorithm to estimate the 2-D angles. The proposed method secures the advantages of the existing DOA matrix method such as no requirement of 2-D angle search and autopairing of parameters, avoids the angle annexation problem, reduces the loss of the array aperture, and improves the performance of the angle estimation effectively. The computer simulation results demonstrate the effectiveness of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2398-2403,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60902079) 国防科技重点实验室基金(9140C0104081005)资助课题
关键词 L型阵列 多输入多输出雷达 波达方向矩阵 联合对角化 二维角度估计 L-shape array multiple-input multiple-output (MIMO) radar direction of arrival (DOA) matrix joint diagonalization two-dimensional (2-D) angle estimation
  • 相关文献

参考文献15

  • 1Wax M, Shan T, Kailath T. Spatio-temporal spectral analysis by eigenstructure method [J]. IEEE Trans. on Acoutics, Speech and Signal Processing, 1984,32(4) :817 - 827.
  • 2Kedia V S, Chandna B. A new algorithm for 2-D DOA estimation[J]. Signal Processing, 1997,60(3) : 325 - 332.
  • 3VanderVeen A J, Ober P B, Deprettere E F. Azimuth and elevation computation in high resolution DOA estimation[J]. IEEE Trans. on Signal Processing ,1992,7(40) :1828 - 1832.
  • 4Yin Q Y, Newcomb R, Zou L H. Estimating 2-D angle of arri val via two parallel linear array[C]//Proc, of the IEEE Inter national Conference on Acoustic, Speech and Signal Process ing, 1989 :2083 - 2086.
  • 5殷勤业,邹理和,Robert W.Newcomb.一种高分辨率二维信号参量估计方法——波达方向矩阵法[J].通信学报,1991,12(4):1-7. 被引量:151
  • 6Yin Q Y, Neweomb R, Zou L H. Relation between the DOA matrix method and the ESPRIT mehtod[C]// Proc. of the IEEE International Symposium on Circuits and Systems, 1990: 1561 - 1564.
  • 7金梁,殷勤业.时空DOA矩阵方法[J].电子学报,2000,28(6):8-12. 被引量:76
  • 8夏铁骑,汪学刚,郑毅,万群.联合对角化-DOA矩阵方法[J].中国科学(E辑),2008,38(4):599-606. 被引量:5
  • 9Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution[C]//Proc, of the IEEE Thlrty-Seventh Asilomar Conference on Signal, Systems and Computers, 2003,1 (9) : 54 - 59.
  • 10Xu L Z, Li J, Stoioa P. Adaptive techniques for MIMO radar[C]//Proc. of the IEEE International Conference on Radar, 2008 :258 - 262.

二级参考文献36

  • 1Chan A Y J, Litva J. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array. In: IEE Proceedings of Radar, Sonar and Navigation, vol 142(3). New York: IEEE Press, 1995. 105-114.
  • 2Kedia V S, Chandna B. A new algorithm for 2-D DOA estimation. Signal Process, 1997, 60(3): 325--332.
  • 3van der Veen A J, Ober P B, Deprettere E F. Azimuth and elevation computation in high resolution DOA estimation. IEEE Trans Signal Process, 1992, 7(40): 1828--1832.
  • 4Yin Q Y, Newcomb R, Zou L. Estimating 2-D angle of arrival via two parallel linear array. In: Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, vol 3. New York: IEEE Press, 1989. 2803--2806.
  • 5殷勤业.高分辨率波达方向估计.博士学位论文.西安:西安交通大学.
  • 6Zoltowski M D, Haardt M, Mathews C P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans Signal Processing, 1996, 2(44): 316--322.
  • 7Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation technique using second-order statistics. IEEE Trans Signal Process, 1997, 2(45): 434--444.
  • 8Roy R, Kailath T. ESPRIT Estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoustics Speech Signal Process, 1989, 7(37): 984-995.
  • 9Marcos S, Marsal A,Benidir M. The propagator method for source bearing estimation. Signal Process, 1995, (42): 121--138.
  • 10Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proc, of IEEE Radar Conference, 2004:71 - 78.

共引文献219

同被引文献95

  • 1叶中付,沈凤麟.一种快速的二维高分辨波达方向估计方法——混合波达方向矩阵法[J].电子科学学刊,1996,18(6):567-573. 被引量:14
  • 2陈客松,何子述,韩春林.利用GA实现非对称稀疏线阵旁瓣电平的优化[J].电子与信息学报,2007,29(4):987-990. 被引量:10
  • 3Pillai S U, Kwon B H. Forward/backward smoothing techniques for coherent signal identification[J]. IEEE Trans. on Acoustics , Speech, Signal Processing, 1989, 37(1): 8-15.
  • 4Dmochowski J, Benesty J, Affes S. Direction of arrival estima- tion using eigenanalysis of the parameterized spatial correlation matrix[C]//Proc, of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2007 : 1 - 4.
  • 5Han F M, Zhang X D. An ESPRIT-like algorithm for coherent DOA estimation[J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4(6) : 443 - 446.
  • 6Liu L G, Gai Y B, Wang H S, et al. An improved ESPRIT-like algorithm for coherent signal and its application for 2-D DOA es- timation[C]//Proc, of the 7th International Symposium on An- tennas, Propagation & EM Theory, 2006 : 1 - 4.
  • 7Wang T, Yang L S, Lei J M, et al. A modified MUSIC to esti- mate DOA of the coherent narrowband sources based on UCA [ C] // Proc. of the International Conference on Communication Technology, 2006:1 4.
  • 8Wax M, Sban T J, Kailath T. Spatial temporal spectral analysis by eigenstructure methods [J].IEEE Trans. on Acoustics, Speech, Signal Processing, 1984, 32(4) :817 - 827.
  • 9Mathews C P, Zoltowski M D. Eigenstructure techniques for 2 D angle estimation with uniform circular arrays[J]. IEEE Trans. on Signal Processing, 1994, 42(9):2395-2407.
  • 10Chan A Y J, Litva J. MUSIC and maximum likelihood teeh niques on two-dimensional DOA estimation with uniform cireu lar array[J].IEE Proceedings Radar, Sonar and Navigation 1995, 142(3): 105-114.

引证文献7

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部