期刊文献+

低信噪比条件下多基阵检测融合系统建模与性能分析 被引量:2

System modeling and performance analysis for detection fusion of multiple arrays under low SNR
下载PDF
导出
摘要 针对水下目标探测中的分布式检测融合问题,提出了一种低信噪比条件下的多基阵检测融合系统模型。基于水声信道估计和似然比检测原理,研究并比较了NP(Neyman-Pearson)准则下局部基阵判决采用二相相移键控(binary phase shift keying,BPSK)和二进制启闭键控(on-off keying,OOK)两种调制方式时的检测融合性能。理论分析和仿真实验表明:在低信噪比条件下,与单基阵探测系统相比,利用本文提出的多基阵检测融合模型建立探测系统能够有效提高对未知目标的检测概率,模型的提出对于水下分布式目标探测系统的建立具有较高的理论参考价值。 For solving the distributed detection fusion problem of underwater target detection, when the acoustic channel signal-to-noise ratio (SNR) is low, a new system model for the multi-array detection fusion system is proposed. Based on the estimation of acoustic channel and the principle of likelihood ratio test, the performance of detection fusion is studied and compared based on the principle of NP when the binary phase shift keying (BPSK) and on-off keying (OOK) modes are used by the local arrays. Both the theory analysis and simulation indicate that under low SNR condition, the probing system established by the proposed model could improve the detection performance effectively, the proposed model has high theoretical reference value to the establishment of the underwater target detection system.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2418-2422,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60972152)资助课题
关键词 检测融合 低信噪比 似然比检测 NP准则 detection fusion low signal-to-noise (SNR) likelihood ratio test (LRT) Neyman-Pearson (NP) principle
  • 相关文献

参考文献15

  • 1Blum R S. Locally optimum distributed detection of dependent random signals based on ranks[J]. IEEE Trans. on Information Theory, 1996,42(3) : 990 - 994.
  • 2Alhakeem S, Varshney P K. Decentralized Bayesian detection with feedback[J]. IEEE Trans. on Systems, Man and Cybernetics, 1996,26 (4) : 503 - 513.
  • 3Mirjalily G, Luo Z Q, Davision T N, et al. Blind adaptive decision fusion for distributed detection[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003,39 (1) : 34 - 52.
  • 4Chen B, Jiang R, Varshney P K. Channel aware decision fusionin wireless sensor networks[J]. IEEE Trans. on Signal Processing, 2004,52 (12) : 3454 - 3458.
  • 5Niu R, Chen B, Varshney P K. Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks[J]. IEEE Trans. on Signal Processing ,2006,54(3):1018 - 1027.
  • 6Niu R, Varshney P K. Performance evaluation of decision fusion in wireless sensor networks[C]// Proc. of the 40th Annual Conference on Information Sciences and Systems,2006:69 -74.
  • 7Thomopoulos S C A, Viswanathan R, Bougoulias D C. Globally optimum computable distributed decision fusion[C] //Proc. of the IEEE 26th Conference on Decision and Control, 1987:1846 - 1847.
  • 8Masazade E, Rajagopalan R, Varshney P K, et al. Evaluation of local decision thresholds for distributed detection in wireless sensor networks using multiobjeetive optimization[C]//IProc, of the 42nd Asilomar Conference on Signals, Systems and Computers, 2008:232 - 236.
  • 9Fabeek G, Mathar R. Chernoff information based optimization of sensor networks for distributed detection[C]// Proc. of the IEEE International Symposium on Signal Processing and Information Technology, 2009 : 606 - 611.
  • 10Quan Z, Ma W K, Cui S, et al. Optimal linear fusion for distributed spectrum sensing via semidefinite programming[C]//Proc, of the IEEE International Conference on Acoustics, Speech, Signal Processing, 2009 : 3629 - 3632.

同被引文献78

  • 1申晓红,王海燕,赵宝珍,张奎.基于混沌序列的水声跳频通信系统研究[J].西北工业大学学报,2006,24(2):180-184. 被引量:6
  • 2何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:85
  • 3李燕君,王智,孙优贤.资源受限的无线传感器网络基于衰减信道的决策融合[J].软件学报,2007,18(5):1130-1137. 被引量:19
  • 4Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey[J]. Computer Networks, 2002, 38 (4) :393 -422.
  • 5Gharavi H, Kumar S P. Scanning the issue: special issue on sen- sor networks and applications [J]. Proceedings of the IEEE, 2003, 91(8):1151-1153.
  • 6Bal M, Shen W, Ghenniwa H. Collaborative signal and informa tion processing in wireless sensor networks:a review[C]//Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 2009:3240 - 3254.
  • 7Yu T C, Lin C C, Chen C C, et al. Wireless sensor networks for indoor air quality monitoring[J]. Medical Engineering & Phy sics, 2013, 35(2):231-235.
  • 8Chen D, Liu Z, Wang L, et al. Natural disaster monitoring with wireless sensor networks ta case study of data intensive applica tions upon low-cost scalable systems[J]. Mobile Networks and Applications, 2013, 18(5) :651 - 663.
  • 9Bouabdellah K, Noureddine H, Larbi S. Using wireless sensor networks for reliable forest fires deteetion[J]. Procedia Computer Science,2013, 19(1) :794 - 801.
  • 10Rezaee A A, Yaghmaee M H, Rahmani A M, et al. HOCA: healtbcare aware optimized congestion avoidance and control pro tocol for wireless sensor networks[J].Journal of Network and Computer Applications, 2014, 37(1) : 216 - 228.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部