期刊文献+

Five-dimensional teleparallel theory equivalent to general relativity,the axially symmetric solution,energy and spatial momentum

Five-dimensional teleparallel theory equivalent to general relativity,the axially symmetric solution,energy and spatial momentum
下载PDF
导出
摘要 A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum. A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.
机构地区 Mathematics Department
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期102-109,共8页 中国物理B(英文版)
关键词 five-dimensional teleparallel equivalent of general relativity five-dimensional solution energy and spatial momentum five-dimensional teleparallel equivalent of general relativity five-dimensional solution energy and spatial momentum
  • 相关文献

参考文献83

  • 1Aliev A N 2006 Mod. Phys. Left. A A21 751.
  • 2Strorainger A and Vafa C 1996 Phys. Left. B 379 99.
  • 3Breckenridge J C, Myers R C, Peet A W and Vafa C 1997 Phys. Lett. B 391 93.
  • 4Kaluza T 1921 Sitzungsber. Preuss. Akad. Wiss Berlin Phys. Math. 966.
  • 5Klein O 1926 Z. Phys. 37 895.
  • 6Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370.
  • 7Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690.
  • 8Frolov V and Stojkovic D 2003 Phys. Rev. D 67 084004.
  • 9Frolov V and Stojkovic D 2003 Phys. Rev. D 68 064011.
  • 10de Andrade V C, Guillen L C T and Pereira J G 2000 Phys. Rev. Lett. 84 4533.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部