期刊文献+

Superexchange interaction enhancement of the quantum transport in a DNA-type molecule

Superexchange interaction enhancement of the quantum transport in a DNA-type molecule
下载PDF
导出
摘要 We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule. Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current. The distance-dependent crossover comes from the topological variation from the one- dimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N - 1 extrachannels for the charge and spin as N being the total base pairs. This will restrain the decay of the transmission and improve the stability of the quantum transport. The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier. We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule. Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current. The distance-dependent crossover comes from the topological variation from the one- dimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N - 1 extrachannels for the charge and spin as N being the total base pairs. This will restrain the decay of the transmission and improve the stability of the quantum transport. The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier.
机构地区 Physics Department
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期427-432,共6页 中国物理B(英文版)
基金 supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.Y6110250 and Y201018926)
关键词 quantum transport DNA SUPEREXCHANGE quantum transport DNA superexchange
  • 相关文献

参考文献34

  • 1Braun E and Keren K 2004 Adv. Phys. 53 441.
  • 2Anderson J, Lorenz C and Travesset A 2008 J. Chem. Phys. 128 184906.
  • 3Daniels B C, Forth S, Sheinin M Y, Wang M D and Sethna J P 2009 Phys. Rev. E 80 040901(R).
  • 4Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301.
  • 5Wang X F and Chakraborty T 2006 Phys. Rev. Lett. 97 106602.
  • 6Li Z J 2005 Chin. Phys. 14 2100.
  • 7Holste D, Grosse I, Beirer S, Schieg P and Herzel H 2003 Phys. Rev. E 67 061913.
  • 8Roche S, Bicout D, Macia E and Kats E 2003 Phys. Rev. Left. 91 228101.
  • 9Largo J, Starr F and Sciortino F 2007 Langmuir 23 5896.
  • 10Dai W, Hsu C W, Sciortino F and Starr F W 2010 Lang- muir 26 3601.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部