期刊文献+

Translation invariant tensor product states in a finite lattice system

Translation invariant tensor product states in a finite lattice system
下载PDF
导出
摘要 We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors. We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期479-486,共8页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China the National Program for Basic Research of the Ministry of Science and Technology of China
关键词 tensor product state translation invariant tensor product state translation invariant
  • 相关文献

参考文献19

  • 1White S R 1992 Phys. Rev. Left. 69 2863.
  • 2Eisert J, Cramer M and Plenio M B 2010 Rev. Mod. Phys. 82 277.
  • 3Ostlund S and Rommer S 1995 Phys. Rev, Lef, t. 75 3537.
  • 4Verstraete F, Porras D and Cirac J 1 2004 Phys. Rev. Lett. 93 227205.
  • 5Pippan P, White S R and Evertz H G 2010 Phys. Rev. B 81 081103(R).
  • 6Pirvu B, Verstraete F and Vidal G 2010 arxiv:1005.5195vl.
  • 7Sandvik A W and Vidal G 2007 Phys. Rev. Lett. 99 220602.
  • 8Maeshima N, Hieida Y, Nishino T and Okunishi K 2002 Prog. Theor. Phys. Supplement 145 204.
  • 9Ameck I, Kennedy T, Lieb E H and Tasaki H 1998 Com- mun. Math. Phys. 115 477.
  • 10McCulloch I 2008 arXiv:0804.2509.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部