摘要
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
基金
supported by the National Basic Research Program of China(Grant No.2009CB929103)
the National Natural Science Foundation of China(Grant No.10974251)