期刊文献+

Pathogenesis and Immunogenicity of an Avian H9N2 Influenza Virus Isolated from Human 被引量:2

Pathogenesis and Immunogenicity of an Avian H9N2 Influenza Virus Isolated from Human
下载PDF
导出
摘要 Objective To investigate the pathogenesis and immunogenicity of H9N2 influenza virus A/Guangzhou/333/99 (a reassortant of G1 and G9 viruses isolated from a female patient in 1999) in a mouse model of infection.Methods Mice were infected with increasing virus titers.Viral load in the lungs and trachea was determined by EID50 assay.Pulmonary histopathology was assessed by hematoxylin‐eosin staining.Anti‐HI antibody titers and T‐cell responses to viral HA were determined by ELISPOT and confirmed by flow cytometry.Results Mice presented a mild syndrome after intranasal infection with A/Guangzhou/333/99 (H9N2) influenza virus.Virus was detected in the trachea and lungs of mice harvested on days 3,6,and 9 post‐infection.A T‐cell response to viral HA was detected on day 6 and H9 HA‐specific CD 4+ T‐cells predominated.Seroconversion was detected after 14 days and antibody persisted for at least 28 weeks.Conclusion Our results suggest that H9N2 (A/Guangzhou/333/99) can replicate in the murine respiratory tract without prior adaptation,and both humoral and cell‐mediated immunity play an important role in the immune response. Objective To investigate the pathogenesis and immunogenicity of H9N2 influenza virus A/Guangzhou/333/99 (a reassortant of G1 and G9 viruses isolated from a female patient in 1999) in a mouse model of infection.Methods Mice were infected with increasing virus titers.Viral load in the lungs and trachea was determined by EID50 assay.Pulmonary histopathology was assessed by hematoxylin‐eosin staining.Anti‐HI antibody titers and T‐cell responses to viral HA were determined by ELISPOT and confirmed by flow cytometry.Results Mice presented a mild syndrome after intranasal infection with A/Guangzhou/333/99 (H9N2) influenza virus.Virus was detected in the trachea and lungs of mice harvested on days 3,6,and 9 post‐infection.A T‐cell response to viral HA was detected on day 6 and H9 HA‐specific CD 4+ T‐cells predominated.Seroconversion was detected after 14 days and antibody persisted for at least 28 weeks.Conclusion Our results suggest that H9N2 (A/Guangzhou/333/99) can replicate in the murine respiratory tract without prior adaptation,and both humoral and cell‐mediated immunity play an important role in the immune response.
出处 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2011年第5期530-536,共7页 生物医学与环境科学(英文版)
基金 supported by the National Basic Research Program of China (973 program: 2005CB523006)
关键词 Avian influenza H9N2 Pathogenic characteristics Host immune responses Avian influenza H9N2 Pathogenic characteristics Host immune responses
  • 相关文献

参考文献4

二级参考文献30

  • 1Li K S, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004, 430(6996): 209-213.
  • 2World Health Organization Global Influenza Program Surveillance Network. Evolution of H5N1 Avian Influenza Viruses in Asia. Emerg InfDis, 2005, 11:1515-1521.
  • 3Beigel J H, Farrar J, Hart A M, et al. Avian influenza A (H5N1) infection in humans. N Engl J Med, 2005, 353(13): 1374-1385.
  • 4World Health organization. Cumulative number of confirmed human cases of avian influenza A/(H5N1). http://www.who.int/csr/disease/ avian_influenza/country/cases table 2008 09 10/en/index.html.
  • 5Rogers G N, Paulson J C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species origin. Virology, 1983, 127 (2): 361-373.
  • 6Rogers G N, D' Souza B L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 1989, 173 (2): 317-322.
  • 7Connor R J, Kawaoka Y, Webster R G, et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 1994, 205(1): 17-23.
  • 8Ito T, Suzuki Y, Suzuki A, et al. Recognition of N-glycolylneuraminic acid linked to galactose by the α2,3 linkage is associated with intestinal replication of influenza A in ducks. J Virol, 2000, 74(19): 9300-9305.
  • 9Couceiro J N, Paulson J C, Baum L G. Influenza vires strains selectively recognize sialylolignsaccharides on human respiratory epithelium: the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res, 1993, 29(2): 155-165.
  • 10Suzuki Y, Ito T, Suzuki T, et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol, 2000, 74 (24): 11825-11831.

共引文献118

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部