期刊文献+

基于核邻域保持判别嵌入的人脸识别 被引量:3

Face recognition based kernel neighborhood preserving discriminant embedding
下载PDF
导出
摘要 为了提取高维人脸图像中的非线性特征,提出一种新的非线性降维方法:核邻域保持判别嵌入算法(KNP-DE).为了表示特征空间中类间邻域结构和不同类样本间的相似度,分别构建类内邻接矩阵和类间相似度矩阵.通过使用核技巧,KNPDE将邻域保持嵌入(NPE)和Fisher判别准则相结合,在保持特征空间中类内邻域结构的同时充分利用类间判别信息,从而具有更强的分类能力.在Yale和UMIST人脸库上的试验结果进一步表明了该算法的有效性. A novel nonlinear dimensionality reduction method named kernel neighborhood preserving discriminant embedding (KNPDE) was proposed in order to extract nonlinear feature in high dimensional face image. The within-class affinity matrix and the between-class similarity matrix were constructed respectively in order to represent the within-class neighborhood geometry and the similarity between the samples from different classes in feature space. KNPDE integrated neighborhood preserving embedding (NPE) with Fisher discriminant criterion by using kernel trick. KNPDE possessed much more power in classification, which preserve the within-class neighborhood geometry in feature space and sufficiently use the between-class discriminant information. Experimental results on the Yale and the UMIST face databases demonstrated the effectiveness of the algorithm.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第10期1842-1847,共6页 Journal of Zhejiang University:Engineering Science
关键词 人脸识别 核邻域保持判别嵌入(KNPDE) 非线性降维 核技巧 类内邻接矩阵 类间相似度矩阵 face recognition kernel neighborhood preserving discriminant embedding (KNPDE) nonlineardimensionality reduction kernel trick within-class affinity matrix between-class similarity matrix
  • 相关文献

参考文献19

  • 1LI S Z, JAIN A K. Handbook of face recognition [M]. NewYork: Springer, 2005: 153-156.
  • 2ROWEIS S T, SAUL L K. An introduction to locally linear embedding [R]. [S. 1. ] : AT&T, 2000.
  • 3SHASHUA A, LEVIN A, AVIDAN S. Manifold pur suit: a new approach to appearance based recognition [C]// 16th International Conference on Pattern Recogni- tion. Quebec City: [s. n.], 2002: 590-594.
  • 4TAYLOR J S, CRISTIANINI N. Kernel methods for pattern analysis [M]. London: Cambridge University Press, 2004: 25-45.
  • 5SCHOLKOPF B, SMOLA A, MULLER K R. Nonlin- ear component analysis as a kernel eigenvalue problem[J].Neural Computation, 1998, 10(5) : 1299 - 1319.
  • 6YANG M H. Kernel eigenfaces vs. kernel Fisherfaees: face recognition using kernel methods [C]// Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington D. C: IEEE, 2002:215 - 220.
  • 7PLESS R, SOUVENIR R. A survey of manifold learn ing for images [J].IPSJ Transactions on Computer Vi- sion and Applications, 2009, 1(1) .. 83 - 94.
  • 8ROWEIS S T, SAUL K I.. Nonlinear dimensionality re- duction by locally linear embedding[J]. Science, 2000, 290(5500) : 2323 - 2326.
  • 9ROWEIS S T, SAUL K I.. Nonlinear dimensionality re- duction by locally linear embedding[J].Science, 2000, 290(5500) : 2323 - 2326.
  • 10BELKIN M, NIYOGI P. Laplacian Eigenmaps and spec tral techniques for embedding and clustering [C]// Neural Information Processing Systems. Vancouver: MIT, 2001:585 - 591.

二级参考文献53

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3H. Sebastian Seung, Daniel D. Lee. The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 4Andrew Y. Ng, Michael I. Jordan, Yair Weiss. On spectral clustering: Analysis and an algorithm [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 849-856
  • 5J. Shawe-Taylor, N. Cristianini, J. Kandola. On the concentration of spectral properties [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 511-517
  • 6F. R. K. Chung. Spectral Graph Theory [M]. Fresno:American Mathematical Society. 1997
  • 7B. Scholkopf, A. Smola, K-R. Muller. Nonlinear component analysis as a kemel eigenvalue problem[J].Neural Computacation, 1998, 10(5): 1299-1319
  • 8T. Hastie, W. Stuetzle. Principal curves[J]. Journal of the American Statistical Association, 1989, 84(406) : 502-516
  • 9T. Cox, M. Cox. Multidimensional Scaling [M]. London:Chapman & Hall, 1994
  • 10J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction [J].Science, 2000, 290(12): 2319-2323

共引文献151

同被引文献50

  • 1庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 2Martinez A and Kak A. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 3Tenenbaum J, Silva V, and Langford J. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000, 290(5500): 2319-2323.
  • 4Roweis S and Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 5Belkin M and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373- 1396.
  • 6He Xiao-fei and Niyogi P. Locality preserving projections[C]. Proceedings of the 16th Advances in Neural Information Processing Systems, Vancouver, 2003:153 -160.
  • 7He Xiao-fei, Cai Deng, Yan Shui-cheng. et al.. Neighborhood preserving embedding[C]. Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005: 1208-1213.
  • 8Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007, 8(5): 1027-1061.
  • 9Huang Hong, Feng Hai-liang, and Peng Cheng-yu. Complete local Fisher discriminant analysis with Laplacian score ranking for face recognition[J]. Neurocomputing, 2012, 89(7): 64-77.
  • 10Huang Hong, Liu Jieanin, Feng Hailiang, et al.. Ear recognition based on uncorrelated local Fisher discriminant analysis[J]. Neurocomputing, 2011, 74(17): 3103-3113.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部