Factorizations that Involve Ramanujan's Function k(q) = r(q)r2(q2)
Factorizations that Involve Ramanujan's Function k(q) = r(q)r2(q2)
摘要
In the "lost notebook", Ramanujan recorded infinite product expansions for where r -= r(q) is the Rogers-Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan's function k = k(q) = r(q)r2 (q2).
In the "lost notebook", Ramanujan recorded infinite product expansions for where r -= r(q) is the Rogers-Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan's function k = k(q) = r(q)r2 (q2).
参考文献14
-
1Ramanujan, S.: The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
-
2Berndt, B. C., Huang, S.-S., Sohn, J., et al.: Some theorems on the Rogers-Ramanujan continued fraction in Ramanujan's lost notebook. Trans. Amer. Math. Soc., 352, 2157-2177 (2000).
-
3Andrews, C. E., Berndt, B. C.: Ramanujan's Lost Notebook, Part I, Springer, New York, 2005.
-
4Liu, Z.-G.: A theta function identity and the Eisenstein series on Fo(5). J. Ramanujan Math. Soc., 22 283-298 (2007).
-
5Chan, H.-C., Ebbing, S.: Factorization theorems for the Rogers-Ramanujan continued fraction in the lost notebook. Preprint (Oct. 8, 2008), https://edocs.uis.edu/hchanl/www/.
-
6Chan, H. H., Chan, S. H., Liu, Z.-G.: The Rogers-Ramanujan continued fraction and a new Eisenstein series identity. Journal of Number Theory, 129, 1786-1797 (2009).
-
7Ramanujan, S.: Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
-
8Berndt, B. C.: Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.
-
9Cooper, S.: On Ramanujan's function k(q) = r(q)r2(q2). Ramanujan J., 20, 311-328 (2009).
-
10Cooper, S., Lam, H. Y.: Eisenstein series and elliptic functions on F0(10). Adv. in Appl. Math., 46, 192-208 (2011).
-
1I-Iuanyin Chen,H. Kose.Factorizations of Matrices over Projective-free Rings[J].Algebra Colloquium,2016,23(1):23-32.
-
2阎桂英.(g,f)-FACTORIZATIONS OF GRAPHS ORTHOGONAL TO [1,2]-SUBGRAPH[J].Acta Mathematicae Applicatae Sinica,1997,13(4):371-375.
-
3冯好娣.ON ORTHOGONAL (0,f)-FACTORIZATIONS[J].Acta Mathematica Scientia,1999,19(3):332-336. 被引量:3
-
4马润年,许进,高行山.[0, ki ]1m -FACTORIZATIONS ORTHOGONAL TO A SUBGRAPH[J].Applied Mathematics and Mechanics(English Edition),2001,22(5):593-596.
-
5刘桂真.(g, f)-factorizations orthogonal to a star in graphs[J].Science China Mathematics,1995,38(7):805-812. 被引量:5
-
6马润年,高行山.ON(g,f)-FACTORIZATIONS OF GRAPHS[J].Applied Mathematics and Mechanics(English Edition),1997,18(4):407-410. 被引量:1
-
7冯克勤.拉马努詹图:数论在通信网络中的一个应用[J].科学,1996,48(4):19-23.
-
8Michael,D.Hirschhorn,李春英(译),陆柱家(校).拉马努金的“最漂亮的恒等式”[J].数学译林,2011,30(4):341-346.
-
9Qing Feng SUN.Selberg's Integral for Ramanujan Automorphic Representation[J].Acta Mathematica Sinica,English Series,2011,27(7):1449-1454.
-
10CAS Mathematician to Receive 2013 Ramanujan Prize[J].Bulletin of the Chinese Academy of Sciences,2013,27(3):137-137.