期刊文献+

Optimal Quadrature Problem on n-Information for Hardy-Sobolev Classes

Optimal Quadrature Problem on n-Information for Hardy-Sobolev Classes
原文传递
导出
摘要 For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined. For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第12期2371-2378,共8页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 10671019 and 10971251), National Natural Science Special-purpose Foundation of China (Grant No. 10826079) and Chinese Universities Scientific Fund (Grant No. 2009-2-05)
关键词 Hardy-Sobolev class analytic function optimal quadrature formula n-information Hardy-Sobolev class, analytic function, optimal quadrature formula, n-information
  • 相关文献

参考文献1

二级参考文献1

  • 1N. S. Barnett,S. S. Dragomir.A perturbed trapezoid inequality in terms of the fourth derivative[J].Korean Journal of Computational & Applied Mathematics.2002(1)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部