期刊文献+

经验模态分解及其在降噪方面的应用

Empirical Mode Decomposition and Its Application on Signal Denoising
下载PDF
导出
摘要 本文详细介绍了经验模态分解(EMD)方法,描述了EMD算法实现步骤;通过EMD分解,任何信号序列部町分解为一系列不同尺度的固有模态函数(IMF),这种分解方法是从信号本身的尺度特征出发对信号进行分解,具有良好的自适应性,非常适合对非线性非平稳信号进行分析,并列举实例证明了其有效性。同时,提出了一种基于EMD的小波阈值降噪方法,该斤法很大程度上克服了直接小波阈值降噪的一些缺陷,仿真数据处理证明了该方法的有效性。 This paper introduces the 'empirical mode decomposition' of EMD. With EMD any complicated signal can be decomposed into a finite method(EMD),list out the basic steps and often small number of 'intrinsic mode function' (IMF).Since this decomposition method is adaptive, and the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and non-stationary processes. Example is given to demonstrate the advance and efficient of the method. Meanwhile, a new wavelet threshold de-noising method based on EMD is proposed. This method avoids some deficiencies of the traditional de-nosing process. The simulation results show this method has advantage over the traditional wavelet threshold de-noising method.
出处 《模具工程》 2011年第11期88-92,共5页 Mould &Die Project
关键词 经验模态分解 固有模态分量 小波阈值 信噪比. empirical mode decomposition intrinsic mode function wavelet threshold SNR.
  • 相关文献

参考文献5

二级参考文献23

  • 1王亚,吕新华,王海峰.一种改进的小波阈值降噪方法及Matlab实现[J].微计算机信息,2006(02X):259-261. 被引量:45
  • 2孙艳争,黄炜,余波.基于EMD的非线性信号自适应分析[J].电子科技大学学报,2007,36(1):24-26. 被引量:11
  • 3HUANG N E, SHEN Z, LONG S R et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and-stationary Time Series Analysis[J]. Proc R Soc Lond A, 1998,454( 1971 ) :903- 995.
  • 4BOUDRAA A O, CEXUS J C. EMD-based Signal Filtering [ J ]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (6) :2196-2202.
  • 5[1]N.E. Huang. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond, 1998,454 (A): 903 ~995.
  • 6[2]L. Colen. Time-frequency distributions :a review. IEEE.Proc. ,1989,77(7) :941~981.
  • 7[4]N.E.. Huang,S.. R.. Long, Z. Shen. A new view of nonlinear water waves:The Hilbert spectrum. Annu.Rev. Fluid, 1999,31:417~457.
  • 8[5]N.E. Huang,S. R.. Long. Wave fusion as a mechanism for nonlinear evolution of water waves,J. Fluid. Mech. ,1995,27:254~280.
  • 9高云超,桑恩方,刘百峰.基于经验模式分解的自适应去噪算法[J].计算机工程与应用,2007,43(26):59-61. 被引量:20
  • 10DONOHO D L.Adapting to unknown smoothness via waveletshrinkage[J].J Amer Statist Assoc,1995,81(2):1200-1224.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部