期刊文献+

结构地震反应随机最优控制的多目标概率准则研究

Analysis on multi-objective criteria for stochastic optimal control of base-excited structures
下载PDF
导出
摘要 建立了结构随机最优控制的一类多目标概率准则,包括以性态均衡的反应量等价极值过程的期望和超越概率为目标的准则,和以能量均衡的反应量等价极值过程的期望和超越概率为目标的准则。分析表明,各概率准则的控制效果依赖于其物理意义,能量均衡超越概率准则能够获得系统响应降低与控制力需求之间的合理均衡,是设计随机动力系统最优控制律的优选准则。算例分析表明,所提出的多目标概率准则可以实现地震动作用下结构反应性态的精细化控制。 A family of multi-objective probabilistic criteria for stochastic optimal control of base-excited structures was developed including the two criteria taking the ensemble-expectation and exceedance probability of equivalent extreme-value processes as objective functions in the sense of performance and energy trade-off respectively.Numerical investigations show that the effectiveness of response control hinges on the physical origin of the probabilistic criteria.The exceedance probability criterion in energy trade-off sense accommodates system performance to a better trade-off between response reductions and control requirements,compared with other control criteria currently used.A randomly base-excited eight-storey shear frame,controlled by active tendons was analysed as a numerical example.Numerical results reveal that using the advocated probabilistic criterion,the structural stochastic optimal control operates efficiently with a desirable objective performance achieved.
作者 彭勇波 李杰
出处 《振动与冲击》 EI CSCD 北大核心 2011年第11期224-229,265,共7页 Journal of Vibration and Shock
基金 国家自然科学基金委创新研究群体科学基金(50621062) 上海浦江人才计划(11PJ1409300) 土木工程防灾国家重点实验室探索性研究课题(SLDRCE11-B-04)资助项目
关键词 随机最优控制 能量均衡准则 期望 超越概率 参数优化 stochastic optimal control energy trade-off criteria ensemble-expectation exceedance probability parameter optimization
  • 相关文献

参考文献8

  • 1Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present, and future [ J]. Journal of Engineering Mechanics, 1997, 123(9):897-971.
  • 2Li J, Peng Y B, Chen J B. A physical approach to structural stochastic optimal controls [ J ]. Probabilistic Engineering Mechanics, 2010, 25 (1): 127- 141.
  • 3李杰,彭勇波,陈建兵.随机动力系统最优控制准则研究[J].地震工程与工程振动,2010,30(1):112-117. 被引量:3
  • 4Leondes C T, Salami M A. Algorithms for the weighting matrices in sampled-data linear time-invariant optimal regulator problems [J]. Computers & Electrical Engineering, 1980, 7: 11 -23.
  • 5Zhang W S, Xu Y L. Closed form solution for along wind response of actively controlled tall buildings with LQG controllers [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89 : 785 - 807.
  • 6李杰,艾晓秋.基于物理的随机地震动模型研究[J].地震工程与工程振动,2006,26(5):21-26. 被引量:56
  • 7Mathews J H, Fink K D, Fink K. Numerical Methods Using Matlab (4th Edition) [ M]. Boston: Prentice Hall, 2003.
  • 8Peng Y B, Ghanem R, Li J. Polynomial chaos expansions for optimal control of nonlinear random oscillators [ J ]. Journal of Sound and Vibration, 2010, 329(18) : 3660 -3678.

二级参考文献17

  • 1李杰,艾晓秋.基于物理的随机地震动模型研究[J].地震工程与工程振动,2006,26(5):21-26. 被引量:56
  • 2Wiener N. Extrapolation, interpolation and smoothing of stationary time series, with engineering applications [ M]. Cambridge: The MIT Press, 1949.
  • 3Sperb R P. Maximum principles and their applications [ M]. New York: Academic Press, 1981.
  • 4Bellman R. Dynamic programmining [ M]. Princeton: Princeton University Press, 1957.
  • 5Li J, Chen J B. Probability density evolution method for dynamic response analysis of structures with uncertain parameters [ J ]. Computational Mechanics, 2004, 34(5): 400-409.
  • 6Chen J B, Li J. Dynamic response and reliability analysis of nonlinear stochastic structures [ J]. Probabilistic Engineering Mechanics, 2005, 20 (1): 33-44.
  • 7Li J, Chen J B. Stochastic dynamics of structures [ M ]. lohn Wiley & Sons, 2009. Li J, Peng YB. Stochastic optimal control of earthquake - excited linear systems [ C ]//The 8th Pacific Conference on Earthquake Engineering, Singapore ,2007:5 -7.
  • 8Li J, Peng Y B, Chen J B. A physical approach to structural stochastic optimal controls[J]. Probabilistic Engineering Mechanics, 2010, 25:127 -141.
  • 9Seong T T. Active structural control: Theory and practice [ M]. New York: Longman Scientific & Technical, 1990.
  • 10Stengel R F. Stochastic optimal control: Theory and application [ M]. New York: John Wiley & Sons, Inc, 1986.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部