期刊文献+

分数布朗运动驱动的期权定价模型及其风险特征 被引量:4

Option Pricing Model with Stock and Exercise Price Driven by FBM
原文传递
导出
摘要 分数布朗运动由于具有自相似或长记忆等分形特性,已成为数理金融研究中更为合适的工具。通过假定股票价格服从几何分数布朗运动,构建了Ito型分数Black-Scholes市场;随后基于拟鞅定价方法,求解了分数风险中性测度下的期权定价模型;进而放松执行价格为固定值的假定,研究了股价和履行价共同受分数布朗运动驱动的期权定价模型。数值模拟研究表明,长记忆参数值越大,对投资者和券商的避险策略越有利。 The self-similarity and long-range dependence properties make the Practional Brownian motion a suitable tool in different applications like mathematical finance. This paper used the hypotheses that assert price followed geometric FBM to construct the Ito fractional Blaek-Seholes market. Using of quasi-martingale method based on the fractional risk neutral measure, this paper solved fractional Black-Scholes model. Moreover Option Pricing model with stock and exercise price droved by FBM was discussed. The result showed that the larger of long memory parameter value, the better for investor and securities trader to hedging.
作者 赵巍 何建敏
出处 《数理统计与管理》 CSSCI 北大核心 2011年第6期1002-1008,共7页 Journal of Applied Statistics and Management
基金 国家自然科学基金资助项目(70671025)
关键词 分数布朗运动 拟鞅定价 分数Black-Scholes模型 风险特征 fractional Brownian motion, quasi-martingale pricing, fractional black-scholes model, riskcharacteristics
  • 相关文献

参考文献12

  • 1Osborne M F M. Brownian motion in the stock market[J]. Operations Research, 1959, 7:145-173.
  • 2Mandelbrot B. Fractals and Scaling in Finance [M]. Berlin, Heidelberg, New York: Springer, 1997.
  • 3Mandelbrot B B, Van Ness J W. Fractional Brownian motion, fractional noises and application [J]. SIAM Review, 1968, 10: 422-437.
  • 4Roger L C G. Arbitrage with fractional Brownian motion [J]. Mathematical Finance, 1997, 7:95-105.
  • 5Hu Y, φksendal B. Fractional white noise calculus and application to finance [J]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 1(6): 1-32.
  • 6Salopek D M. Tolerance to arbitrage [J]. Stochastic Process and Applications, 1998, 76: 217-230.
  • 7Decreuscfond L, Ustiinel A S. Stochastic analysis of the fractional Brownian motion [J]. Potential Analysis, 1999, 10(2): 177-214.
  • 8Cheridito P. Arbitrage in fractional Brownian motion models [J]. Finance and Stochastic, 2003, 7: 533-553.
  • 9Elliott R. J, vail der Hoek. A general white noise theory and applications to finance [J]. Mathematical Finance, 2003, 13:301-330.
  • 10Necula C. Option pricing in a fractional Brownian motion environment [R/OL]. Preprint, Academy of Economic Studies Burcharest, Romania, 2002, www.dofin,ase.ro.

二级参考文献11

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2Black F, Scholes M., The Pricing of Options and Corporate Liabilities, Journal of Political Economy 1973 (81). 637--659.
  • 3Merton R C., The Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 1973 (4), 141--183.
  • 4Gray S F, Whaley R E., Valuing Bear Market Reset Warrants with a Periodic Reset, Journal of Derivatives 1997 (5), 99-- 106.
  • 5Cheng W, Zhang R., TheAnalytics of Reset Options, Journal of Derivatives 2000 (8), 59--71.
  • 6Gray S F, Whaley R E., Reset Put Options : Valuation, Risk Characteristics, and an Application,Australian Journal of Management 1999 (24), 1--20.
  • 7Hull J., Options, Futures, and Other Derivative Securities, 3^rd ed. Prentice Hall, Englewood Cliffs,New Jersey, 1996.
  • 8Ducan, T.E., Y. Hu and B. Pasik-Ducan, Stochastic calculus for fractinal Brownian motion, I. SIAMJ. Control Optim.,38(2000), 582-612.
  • 9Hu, Y. and B. Oksendal, Fractional white noise calculus and application to finance, Inf. Dim. Anal. Quantum Prob.Rel. Top., 6(2003), 1-32.
  • 10Lin, S.J., Stochastic analysis of fractional Brownian motion, fractional noises and application, SIAM Review,10(1995), 422-437.

共引文献51

同被引文献57

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部