期刊文献+

一种图像序列平稳性和相关性检验的天气场景分类方法 被引量:2

Stationarity and Correlation Test of Image Sequences Based Classification on Scenes with Different Weather Conditions
下载PDF
导出
摘要 提出一种利用图像序列的平稳性和相关性检验的天气场景分类方法.首先,给出天气场景的定义和分类标准;其次,该方法通过分段逆序平稳性检验,提出图像均值子序列逆序总数数学期望和方差的计算方法,将天气场景分为平稳性天气场景和非平稳性天气场景;最后,提出自相关函数的分类检验方法,建立对待分类场景图像序列的激变描述,完成对其所属静态或动态场景的分类.该方法为非参数检验方法,推断分类标准时无需估计总体分布的参数,并能在线学习所得的分类标准.实验结果表明,该方法可准确完成对天气场景的动态分类. Classification on different weather conditions provides first step support for outdoor scene modeling, which is a core component in many different applications of image sequence analysis and computer vision. In this paper, an objective classification method on scenes with different weather conditions is presented with two steps based on stationarity and correlation test of image sequences. First of all, scenes with various weather conditions are cdnsiderably described, on which an objective classification standard is accentuated. Secondly, based on the stationarity test on sub-sequences of intensity averages with counter order, the corresponding expectation and deviation of patterns are formulated and proved. Therefore, scenes with different weather conditions are primarily classified into stationary and nonstationary ones. Finally, a correlation test on autocorrelation function of intensity values in image sequences with different weather conditions is organized. Moreover, descriptions on sudden change of the autocorrelation function are established. Consequently, a classification on static or dynamic scene is ultimately accomplished. The two-step method needs no parameters, which avoids estimating the parameters of population distribution, when the inference of classification standard is in progress. This method is demonstrated to be effective using experiments on seven videos with different weather conditions, which contributes to latter applications such as scene modeling with different weather conditions.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第11期1973-1982,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60702032) 哈尔滨工业大学自然科学研究创新基金项目(HIT.NSRIF.2008.63) 中国航天工业创新基金项目(CAST200814)
关键词 天气环境 场景分类 平稳性检验 相关性检验 图像序列处理 weather condition scene classification stationarity test correlation test image sequence processing
  • 相关文献

参考文献14

  • 1谢昭,高隽.基于高斯统计模型的场景分类及约束机制新方法[J].电子学报,2009,37(4):733-738. 被引量:11
  • 2刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 3Garg K, Nayar S K. Vision and rain [J]. International Journal of Computer Vision, 2007, 75(1): 3-27.
  • 4ZhangXP, Li H, Qi Y Y, et al. Rain removal in video by combining temporal and chromatic properties [C] //Proc of 2006 IEEE Int Conf on Multimedia and Expo. Piscataway, NJ.. IEEE, 2006.. 461-464.
  • 5Li L Y, Huang W M, et al. Statistical modeling of complex backgrounds for foreground object detection [J]. IEEE Trans on Image Processing, 2004, 13(11): 1459-1472.
  • 6左军毅,潘泉,梁彦,张洪才,程咏梅.基于模型切换的自适应背景建模方法[J].自动化学报,2007,33(5):467-473. 被引量:15
  • 7Hamilton J D. A new approach to the economic analysis of nonstationary time series and the business cycle [J]. Econometriea, 1989, 57(2).- 357-384.
  • 8Roger M H, Benoit P, Philips P B C. Incidental trends and the power of panel unit root tests [J]. Journal of Econometrics, 2007, 141(2): 416-459.
  • 9Kwiatkowski D, Phillips P, Schmidt P, et al. Testing the null hypothesis of stationarity against the alternative of a unit root= How sure are we that economic series have a unit root [J]. Journal of Econometrics, 1992, 54(1/2/3): 159-178.
  • 10Leybourne S J, McCabe. Modified stationarity tests with data-dependent model selection rules[J]. Journal of Business and Economic Statistics, 1999, 17(2): 264-270.

二级参考文献39

  • 1A Oliva, A Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope [ J]. International Journal of Computer Vision,2001,42(3) :145- 175.
  • 2A Oliva, A Torralba. Building the gist of a scene: the role of global image features in recognition[ J] .Progress in Brain Research,2006, 155:23 - 36.
  • 3T Serre, A Oliva, T A Poggio. A feedforward architecture accounts for rapid categorization[ A ]. In Proceedings of the National Academy of Science [ C ]. New York: PNAS, 2007. 6424 - 6429.
  • 4A Vailaya, M Figueiredo, A Jain, H Zhang. Image classification for content-based indexing [ J ].IEEE. Transactions on Image Processing, 2001,10(1) : 117 - 130.
  • 5E B Sudderth,A Torralba,W T Freeman,A S Willsky. Learning hierarchical models of scenes,objects and parts[A] .In Proceedings of Tenth IEEE International Conference on Vision[C]. USA: IEEE., 2005.1331 - 1338.
  • 6L F Fei, P Perona. A bayesian hierarchical model for learning natural scene categodes[ A]. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C]. USA: IEEE., 2001,2.524 - 531.
  • 7T Serre, L Wolf, T Poggio. Object recognition with features inspired by visual cortex [ A ]. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C]. USA: IEEE, 2005,2.994 - 1000.
  • 8Y W Teh. Bethe free energy and contrastive divergence approximations for undirected graphical models[ D]. Toronto, Canada: University of Toronto, 2003,7.
  • 9Y W Teh,M Welling. The unified propagation and scaling algorithm[ J]. Advances in Neural Information Processing Systems,2001,14(2) :953 - 960.
  • 10D Lowe. Local feature view clustering for 3D object recognition[ A ]. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C]. USA: IEEE., 2001.682 - 688.

共引文献41

同被引文献32

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部