期刊文献+

休假时间服从T-SPH分布的M/M/1单重休假排队 被引量:2

The M/M/1 Queue with Single T-SPH Vacations
下载PDF
导出
摘要 本文研究休假时间服从T-SPH分布的M/M/1单重休假排队模型.T-SPH表示由可数状态生灭过程定义的位相型分布.该模型可以用一个具有可数位相的拟生灭(QBD)过程来描述.利用拟生灭过程和算子几何解的方法,我们给出了模型率算子的具体形式以及平稳队长分布的概率母函数.在此基础上,得到了平稳队长和平稳等待时间的随机分解结果以及附加队长的概率母函数(PGF)和附加延迟的LST的具体形式. This paper considers an M/M/1 queue with single vacations where the vacation time follows the T-SPH distribution, which denotes the phase type distribution defined on a birth and death process with countably many states. This queueing system can be described by a quasi-birth-and-death (QBD) process with countably states. According to the QBD process and the operator-geometric method, we give the closed-form of the rate operator and the PGF of the stationary queue length. Based on the stationary queue length, we obtain the stochastic decomposition structures of the stationary queue length and the waiting time of the model, as well as the PGF of the additional queue length and the LST of the additional delay.
出处 《工程数学学报》 CSCD 北大核心 2011年第6期803-811,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60874083) 河南省基础与前沿研究基金(092300410147)~~
关键词 M/M/1排队 T-SPH分布 单重休假 算子几何解 随机分解 M/M/1 queue T-SPH distribution single vacation operator-geometric solution stochastic decomposition
  • 相关文献

参考文献17

  • 1Doshi B T. Queueing systems with vacations--a survey[J]. Queueing Systems, 1986, 1(1): 29-66.
  • 2Tian N S, Zhang Z G. Vacation Queueing Models-Theory and Applications[M]. New York: Springer, 2006.
  • 3Alam S, et al. M/M/1 queue with server's vacations[J]. Asia-Pacific Journal of Operational Research, 1986, 3(1): 21-26.
  • 4Tian N S, Li Q L. The MIMIc queue with PH synchronous vacations[J]. Journal of Systems Science and Mathematical Sciences, 2000, 13(1): 7-16.
  • 5Servi L D, Finn S G. M/M/1 queue with working vacations (M/M/1/WV)[J]. Performance Evaluation, 2002, 50(1-4): 41-52.
  • 6Liu W Y, et al. Stochastic decompositions in the M/M/1 queue with working vacations[J]. Operational Research Letters, 2007, 35(5): 595-600.
  • 7Tian N S, et al. The M/M/1 queue with single working vacation[J]. International Journal of Information and Management Sciences, 2008, 19(4): 621-634.
  • 8Tian N S, et al. Matrix analytic method and working vacation queues--a survey[J]. International Journal of Information and Management Sciences, 2009, 20(4): 603-633.
  • 9史定华,郭进利,刘黎明.ON THE SPH-DISTRIBUTION CLASS[J].Acta Mathematica Scientia,2005,25(2):201-214. 被引量:4
  • 10Neuts M F. Matrix-geometric Solutions in Stochastic Models: an Algorithmic Approach[M]. Baltimore: The Johns Hopkins University Press, 1981.

二级参考文献1

共引文献3

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部