期刊文献+

两类本原不可幂定号有向图基的界

Bounds of the Bases on Two Classes of Primitive Non-Powerful Signed Digraphs
下载PDF
导出
摘要 利用图论和矩阵理论的方法,讨论了两类本原不可幂定号有向图,研究了仅有两个圈的本原不可幂定号有向图Ds,t和其中有两个圈长相同但仅有三个圈的不可幂定号有向图Ds,t,q的基的界,利用定号有向图基的定义和Frobenius数得到了仅有两个圈的本原不可幂定号有向图Ds,j的基,刻划了定号有向图Ds,t,q基的界. By using graph theory and matrix theory,two classes of primitive non-powerful signed digraphs were discussed.The bounds of the bases of the primitive non-powerful signed digraphs Ds,t with two cycles and those with three cycles in which two cycles have the same length were researched.By using the definition of the base of signed digraphs and the Frobenius number,the bases on the signed digraphs Ds,t were obtained and the bounds of the bases on the signed digraphs Ds,t,q were characterized.
作者 胡红萍
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2011年第5期529-533,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(60876077) 山西省自然科学基金资助项目(2009011018-3) 中北大学高层次人才科研启动费(20090714) 中北大学校基金资助项目(2010)
关键词 本原 不可幂 定号有向图 Frobenius数 primitive non-powerful signed digraph base Frobenius number
  • 相关文献

参考文献4

  • 1Li Z S, Hall F, Eschenbach C. On the period and base of a sign pattern matrix[J]. Linear Algebra and Its Applications, 1994, 212/213: 101-120.
  • 2You L H, Shao J Y, Shan H Y. Bounds on the basis of irreducible generalized sign pattern atrices[J]. Linear Algebra and Its Applications, 2007, 427: 285-300.
  • 3Liu B L, You L H. Bounds on the base of primitive nearly reducible sign pattern matrices[J]. Linear Algebra and Its Applications, 2006, 418: 863-881.
  • 4Shao J Y. On the exponent of a primitive digraph[J]. Linear Algebra and Its Applications, 1985, 64: 21-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部