期刊文献+

一种基于模糊集理论的贝叶斯PET重建算法 被引量:1

A Bayesian Algorithm Based on Fuzzy Theory for PET Reconstruction
下载PDF
导出
摘要 最大似然估计算法是PET重建的经典算法,是统计意义上的最优解,但是MLEM(Maximum Likelihood Expectation Maximization)算法具有不稳定性,即随迭代次数的增加,图像噪声反而会增加.针对这一缺点,研究了最大后验(Maximum A Posteriori,MAP)重建方法,分析了MAP方法中不恰当的约束造成的过分平滑等不良后果,提出了基于模糊理论的Bayesian重建方法,以提高重建结果的噪声性能并能够保持图像边界等有用的信息.主要方法是在重建过程中先用模糊加权均值滤波器滤波,再用中值滤波器进行滤波.仿真结果表明:该算法不仅能够抑制噪声,而且能够保持重建图像的边缘. Maximum likelihood estimation,which is classical in PET reconstruction,is of statistically optimal solution.However,with the increasing of the iterations,the noise's influence on the reconstruction of the image increases.MAP(maximum a posteriori) reconstruction algorithm was studied.The negative effect of MAP such as over-smoothing caused by inappropriate constraints was analyzed.A new Bayesian reconstruction algorithm based on fuzzy theory was proposed to enhance the noise performance and to preserve the edge information.The fuzzy weight average filter and median filter were used in the algorithm.Simulations showed that the proposed method not only performed well for noise suppression,but also preferably kept the edges of the reconstruction image.
作者 刘祎 桂志国
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2011年第5期630-635,共6页 Journal of North University of China(Natural Science Edition)
基金 山西省自然科学基金资助项目(2009011020-2) 山西省高等学校科技开发资助项目(20081024)
关键词 正电子断层成像 MAP MP 模糊加权均值滤波器 positron emission tomography MAP MP fuzzy weight averaging filter
  • 相关文献

参考文献11

  • 1Shepp L A, Vardi Y. Maximum likelihood restoration for emission tomography[J]. IEEE Trans. Med. Imaging, 1982, 1(1): 113-122.
  • 2刘力,吴朝霞,赵书俊.具有超松弛因子的OSEM重建算法[J].中国图象图形学报(A辑),2002,7(8):814-817. 被引量:5
  • 3Veklerov E, Llacer J. Stopping rule for the MLE algorithm based on statistical hypothesis testing[J]. IEEE Trans. Med. Imaging, 1987, 6(4): 313-319.
  • 4Snyder D L, Miller M I, Thomas L J. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography[J]. IEEE Trans. Med. Imaging, 1987, 6(3): 228-238.
  • 5Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing [J]. IEEE Trans. Med. Imaging, 1991, 10(4):439-446.
  • 6Alenius S, Ruotsalainen U. Generalization of median root prior reconstruction[J]. IEEE Trans. Med. Imaging, 2002, 21(11): 1413-1420.
  • 7Hsiao I T, Rangarajan A, Gindi G. A new convex edge-preserving median prior with applications to tomography[J]. IEEETrans. Med. Imaging, 2003, 22(5): 580-585.
  • 8Green P J. Bayesian reconstructions from emission tomography data using a modified EM algorithm[J]. IEEE Trans. Med. Imaging, 1990, 9(1): 84-93.
  • 9Hsiao I T, Rangarajan A, Gindi G. A median prior for tomographic reconstruction [J ]. IEEE Nuclear Science Symposium Conference Record, 2001, 3(7) : 1779-1782.
  • 10蔡靖,杨晋生,丁润涛.模糊加权均值滤波器[J].中国图象图形学报(A辑),2000,5(1):52-56. 被引量:43

二级参考文献4

  • 1[1]Shepp L A, Vardi Y. Maximum likelihood reconstruction in emission tomography[J]. IEEE Trans. Med. Imag., 1982,MI-1 (3) : 113~ 122.
  • 2[2]Hudson H M, Larkin R S. Accelerrated image reconstruction using ordered subsets of projection data[J]. IEEE Trans. Med.Imag. , 1994,13(4):601~609.
  • 3[3]Peter S, Matthias E B, Gunnar B. Subsets and overrelaxation in iterative image reconstruction[J]. Phys. Med. Biol., 1999,44(5):1385~1396.
  • 4[4]Wallis J W, Miller T R. Rapidly converging iterative reconstruction algorithms in Single-Photon Emission Computed Tomography[J]. J. Nucl. Med., 1993,34(10):1793~1800.

共引文献46

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部