期刊文献+

管道轴向双裂纹夹角对尖端应力强度因子的影响 被引量:6

Influence of Double Axial Cracks' Angle on Stress Intensity Factors of Crack Tip
下载PDF
导出
摘要 管道裂纹应力强度因子的分析是裂纹是否扩展判断和管道疲劳断裂计算的关键.应用通用有限元软件ANSYS对不同管道外径、裂纹尺寸、不同夹角下含轴向双裂纹管道裂纹尖端应力强度因子进行了计算.结果表明,管道和裂纹尺寸确定时,裂纹尖端应力强度因子随裂纹间夹角增大而增加;管道尺寸确定时,随着裂纹长与壁厚比增加,夹角对裂纹尖端应力强度因子影响增强.通过分析夹角对双径向裂纹应力强度因子的影响,为工程实际中合理地判断裂纹扩展可能性和精确地进行管道疲劳断裂计算提供参考. Stress intensity factor analysis of pipe cracks is the key to determine whether there exists crack propagation and to calculate the pipe fatigue fracture.The stress intensity factors at the double axial cracks' tip of pipes with different size,crack length and angles between cracks were calculated by universal finite element software ANSYS.The calculation results indicated that the stress intensity factor increases with increasing the angle between double axial-through cracks when the pipe size and crack dimensions are determined.The influence of angle between cracks on stress intensity factor is enhanced with increased ratio between crack length and pipe thickness at defined pipe size.The analysis may provide certain reference information for reasonable determination of the crack propagation and accurate calculation of the pipes' fatigue fracture.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期1623-1626,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51005044)
关键词 有限元 轴向双裂纹 应力强度因子 夹角 finite element double axial cracks stress intensity factor angle
  • 相关文献

参考文献12

  • 1Yoshimura S, Lee J. New probabilistic fracture mechanics approach with neural network-based crack modeling: it's application to multiple cracks problem[ J].AS/V/E Pressure Vessel and Piping Conference, 1995,304:437-442.
  • 2Kishimoto K, Soboyejo W. A numerical investigation of the interaction and coalescence of twin coplanar semi-elliptical fatigue cracks[J ]. International Journal of Fatigue, 1989, 11:91-96.
  • 3Moussa W A, Bell R. Investigating the effect of crack shape on the interaction behavior of no coplanar surface cracks usingfinite element analysis [ J ]. ASME Journal Pressure Vessel Technology, 2002,124 : 234-238.
  • 4Chan S K, Tuba I S, Wilson W K. On the finite element method in linear fracture mechanics [ J ]. Engineering Fracture Mechanics, 1970,2( 1 ) : 1-17.
  • 5丛成龙,李惠荣.内压作用下含内表面环向裂纹光滑弯管的应力强度因子[J].石油化工设备,2007,36(2):33-35. 被引量:3
  • 6何家胜,李书容,危卫.圆管外表面轴向椭圆裂纹应力强度因子的有限元研究[J].管道技术与设备,2008(2):18-20. 被引量:4
  • 7Perl M, Arone R. Stress intensity factors for large arrays of radial cracks in thick-walled steel cylinders[J ]. Engineering Fracture Mechanics, 1986,25(2) :341-348.
  • 8Kirkhope K J, Bell R, Kirkhope J. Stress intensity factor equations for single and multiple cracked pressurized thickwalled cylinders [J ]. International Journal of Pressure Vessels and Piping, 1990,41 ( 1 ) : 103-111.
  • 9Shu H M, Petit J, Bezine G. Stress intensity factors for radial cracks in thick walled cylinders--I: symmetrical cracks[ J ]. Engineering Fracture Mechanics, 1994,49 (4) : 611-623.
  • 10Shu H M, Petit J, Bezine G. Stress intensity factors for radial cracks in thick walled cylinders-Ⅱ : combination of auto-frottage and internal pressure[J]. EngineeringFracture Mechanics, 1994,49(4) :625-629.

二级参考文献9

共引文献7

同被引文献39

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部