期刊文献+

一种改进的Snort系统的设计与应用

Design and Application of A Improved Snort System
下载PDF
导出
摘要 入侵检测是网络安全技术领域的主要研究方向之一.为了提高入侵的检测效率,改进后的Snort系统采用了数据挖掘技术,总结出一些正常模式,能够对异常行为进行检测,并且在提高入侵检测系统的完备性和准确性的同时,也能更准确地检测某些未知攻击或者已知攻击的变种. Intrusion detection was the main area of network security technology research direction.In order to improve the efficiency of intrusion detection,the improved snort system was used data mining technology,it could sum up some of the normal mode,and used for anomaly detection.It also could help to improve intrusion detection system detection accuracy and completeness,and could detect for some unknown attacks or variants of known attacks more accurately.
出处 《吉林师范大学学报(自然科学版)》 2011年第4期102-104,107,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 福建省教育厅科研基金项目(JA00423)
关键词 入侵检测 数据挖掘 APRIORI算法 SNORT intrusion detection data mining apriori algorithm snort
  • 相关文献

参考文献10

  • 1Shengwei Li, Lingsheng Li, Chong Han. Mining closed frequent itemset based on FP-tree[ C]. Granular Computing, 2009, GRC' 09. IEEE International Con- ference on. Page(s) :354 - 357.
  • 2Qihua Lan, Defu Zhang, Bo Wu. A New Algorithm for Frequent Itemsets Mining Basedon Apfiori and FP-tree[ C ]. Intelligent Systems,2009. GCIS'09. Will Global Congress on. Page(s) : 360 - 364.
  • 3Min Chert, XueDong Gao, HuiFei Li. An efficient parallel FP-Gmwth algorithm[ C]. Cyber-Enabled Distributed Computing and Knowledge Discovery, 20091 I CyberC'09. International Conference on. Page(s) : 283 - 286.
  • 4Agrawal R, Mielinski T, A. Swami. Mining Association Rules Between Set of Items inlarge Database[ C ]. Proceeding of ACIFSIG, 1990 Intemational Confer- ence. (1993) ,207 - 216.
  • 5王丽娜,董晓梅,郭晓淳,于戈.基于数据挖掘的网络数据库入侵检测系统[J].东北大学学报(自然科学版),2003,24(3):225-228. 被引量:30
  • 6Chunfu Jia, Deqiang Chert. Performance Evaluation of a Collaborative Intrusion Detection System[C]. Natural Computation, 2009. ICNC'09. Fifth Interna- tional Conferenceon 2009,6:409 - 413.
  • 7Jun Tan, Yingyong Bu, Bo Yang. An Efficient Close Frequent Pattern Mining Algorithm[ C]. Intelligent Computation Technology and Automation, 2009. ICI- L'TA' 09. SecondIntemational Conference on. Page( s ) : 528 - 531.
  • 8Jack Koziol著,吴溥峰,孙默,许诚等译.snort入侵检测实用解决方案[M].北京:机械工业出版社,2005.
  • 9Jorge Herrerias Guerrero, Roberto Gomez Cardenas: An example of communication between security tools: iptables and snort[ J]. Operating Systems Review 2005,39(3) :34 - 43.
  • 10HANJIAWEI,KAMBERM.范明,盂晓峰,译.数据挖掘概念与技术(第二版)[M].北京:机械工业出版社,2006.

二级参考文献10

  • 1HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Feiertag R, Rho S, Benzinger L,et al. Intrusion detection inter-component adaptive negotiation[J]. Computer Networks, 2000,34(4):605-621.
  • 3Lee W, Stolfo S J. Data Mining approaches for intrusion detection[EB/OL]. http:∥www.cs.columbia.edu/~wenke/, 2000-12-03.
  • 4Manganaris S, Christensen M, Zerkle D, et al. A data mining analysis of RTID alarms[J]. Computer Networks, 2000,34(4):571-577.
  • 5Debar H, Dacier M, Wespi A. Towards a taxonomy of intrusion-detection systems[J]. Computer Networks, 1999,31(8):805-822.
  • 6Spafford E H,Zamboni D. Intrusion detection using autonomous agents[J]. Computer Networks, 2000,34(4):547-570.
  • 7Lee W, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models[A]. Proceedings of the 1999 IEEE Symposium on Security and Privacy[C]. Oakland: IEEE, 1999.120-132.
  • 8Lee W, Stolfo S J, Mok K W. Mining audit data to build intrusion detection models[EB/OL]. http:∥www.cs.columbia.edu/~wenke/, 2001-06-12.
  • 9Lee W, Stolfo S J, Mok K W. Mining in a data-flow environment: experience in network intrusion detection[EB/OL]. http:∥www.cs.columbia.edu/~wenke/, 2001-06-12.
  • 10王丽娜,董晓梅,于戈,王东.基于进化神经网络的入侵检测方法[J].东北大学学报(自然科学版),2002,23(2):107-110. 被引量:20

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部