摘要
为提高具有流形结构的高维数据的聚类性能,提出非线性判别K均值聚类算法(NDisKmeans)。该方法通过引入流形上的谱正则化技术,将数据的低维嵌入表示成数据流形上平滑函数的线性组合,然后通过最大化低维空间中聚类类间的散度与总体散度的比值,来实现对高维数据的聚类。还设计了一种收敛的迭代求解方法来求解最优组合系数矩阵和聚类赋值矩阵。NDisKmeans方法由于考虑了数据的流形结构,克服了判别K均值算法中线性映射的不足,从而提高了对高维数据聚类的性能。最后在数据集上的广泛实验表明,NDisKmeans方法能有效实现对高维数据的聚类。
In order to improve the performance of clustering algorithm on high dimensional data by using the manifold structure,a novel clustering algorithm called Nonlinear Discriminant K-means Clustering(NDisKmeans) was proposed.By introducing the spectracl regularization technology,NDisKmeans first represented the desired low dimensional coordinates as linear combinations of smooth vectors predefined on the data manifold;then maximized the ratio between inter-clusters scatter and total scatter to cluster the high dimensional data.A convergent iterative procedure was devised to solute the matrix of the combination coefficient and clustering assignment matrix.NDisKmeans overcomed the limitation of linear mapping of DisKmeans algorithm;therefore,it significantly improved the clustering performance.The systematic and extensive experiments on UCI and real world data sets show the effectiveness of the proposed NDisKmeans method.
出处
《计算机应用》
CSCD
北大核心
2011年第12期3247-3251,3274,共6页
journal of Computer Applications
基金
国家自然科学基金资助项目(60603015
60970034)
河南省科技攻关计划项目(102102210509)
关键词
聚类
流形
K均值聚类
谱正则化
谱聚类
clustering
manifold
K-means clustering
spectral regularization
spectral clustering