期刊文献+

基于混合高斯模型的新型目标检测系统 被引量:11

New objects detection system based on mixture Gaussian model
下载PDF
导出
摘要 针对传统混合高斯模型计算量过大及其在非平稳背景下存在的问题,提出一种新型运动目标检测系统。该系统引入模型等权重初始化策略,改善了视频检测初始阶段的效果;通过基于线性均差的模型匹配方法,减少了对方差的运算次数,有效减少了模型的计算量;加入干扰信息处理模块,以增强模型在复杂背景下的生存能力。经实验验证,新型系统准确检测出了视频初始阶段的多运动目标,可使进入场景后停留的目标快速融入背景,并能有效克服非平稳背景的扰动。实验结果表明该系统相比经典模型,准确性和鲁棒性均有明显改善。 The traditional mixture Gaussian models need much computation and have difficulty in detecting the moving objects under a non-stationary background.Therefore,a new object detection system based on mixture Gaussian model was proposed.An equal weight initial strategy was introduced in the system to improve the results of video detection in the initial stage.Meanwhile,the operation times of variance were reduced by a model matching method based to the linear mean deviation,the calculation of the models was reduced effectively,and the survival ability of model in complex background was enhanced by adding a disturbance information processing module.The experimental results show that the new system can accurately detect multiple moving objects in the initial video stage,and can fast amalgamate the entering and remaining objects into the background.Besides,it can effectively overcome the disturbance of nonstationary background.The research clearly shows that the accuracy and robustness of system are significantly improved.
出处 《计算机应用》 CSCD 北大核心 2011年第12期3360-3362,3365,共4页 journal of Computer Applications
关键词 目标检测 混合高斯模型 线性均差 非平稳背景 object detection mixture Gaussian model linear mean deviation nonstationary background
  • 相关文献

参考文献8

  • 1FRIEDMAN N, RUSSELL S. Image segmentation in video sequences: A probabilistic approach [ C]// Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1997:175 - 181.
  • 2STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 1999:246 -252.
  • 3ELGAMMAL A, HARWOOD D, DAVIS L. Non-parametric model for background subtraction[ C]// Proceedings of the 6th European Conference on Computer Vision. Berlin: Springer, 2000:751 -767.
  • 4REN Y, CHUA C S, HO Y K. Motion detection with non-stationary background[ J]. Machine Vision and Application, 2003, 13(5/6): 332 - 343.
  • 5PLESS R, LARSON J, SIEBERS S, WESTOVER B. Evaluation of local models of dynamic backgrounds[ C]// IEEE Proceedings on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2003, 13(5/6) : 332 - 343.
  • 6SHEIKH Y, SHAH M. Bayesian modeling of dynamic scenes for ob- ject detection[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2005, 27(11) : 1778 - 1792.
  • 7CHEN ZEZH1, PEARS N, FREEMAN M, et al. Background sub- traction in video using recursive mixture models, spatio-temporal ill- tering and shadow removal[ C]//International Symposium on Visual Computing. Berlin: Springer, 2009:1141 - 1150.
  • 8张恒,胡文龙,丁赤飚.一种自适应学习的混合高斯模型视频目标检测算法[J].中国图象图形学报,2010,15(4):631-636. 被引量:22

二级参考文献8

  • 1Chris Stauffer, Eric W, Grimson L. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-757.
  • 2Kaewtrakulpong Pakorn, Bowden Richard. An improved adaptive background mixture model for real-time tracking with shadow detection[ C ]//Proceedings of the 2nd European Workshop Based on Advanced Video-based Surveillance Systems Providence, USA: kluwer Academic Publishers, 2001 : 149-158.
  • 3Zoran Zivkovic. Recursive unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (5) : 651-656.
  • 4Lee Dar-Shyang. Effective gaussian mixture learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5) : 827-832.
  • 5Michael Harvine, Gaile Gordon, John Woodfill. Foreground segmentation using adaptive mixture models in color and depth [ C ]//IEEE Workshop on Detection and Recognition of Events in Video. New York : Computer Science Press, 2001 : 3-11.
  • 6Thongkamwitoon T, Aramvith S, Chalidabhongse T H. An adaptive real-time background subtraction and moving shadows detection[ C ]//IEEE International Conference on Multimedia and Expo. New York: IEEE, 2004, 2: 1459-1462.
  • 7Chao Yuyan, Kenji Suzuki. A run-based two-scan labeling algorithm[J]. IEEE Intelligent Transaction on Image Processing, 2008, 17(5) : 749-756.
  • 8Han Hongzhe, Wang Zhiling. Adaptive background modeling with shadow suppression [ EB/OL ]. [ 2008-12-04 ]. http:// ieeexplore, ieee. org/stamp, jsp? arnumber =01252045.

共引文献21

同被引文献104

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部