摘要
数学形态学滤波算法具有很强的抑制脉冲干扰的能力,但滤除白噪声的能力却不及小波算法。针对这一不足,在对信号进行形态滤波之前先进行小波消噪,再进行HHT分析提取故障特征频率。通过仿真和示例证实了该方法可以有效地消除信号干扰噪声,提取轴承故障特征,达到对滚动轴承故障诊断的目的。
The mathematical morphological filtering algorithm has strong impulse suppression ability,but not as well as the wavelet algorithms on filtering out white noises.Aiming at the shortage,the wavelet denoising combining with mathematical morphology transform is taken as the filter process unit,and then the processed signal is analyzed by HHT to extract the fault characteristic frequency.The result shows that the method is able to eliminate efficiently noise jamming of vibration signals and extract bearing fault characteristic,the objective of fault diagnosis of rolling bearing is achieved.
出处
《轴承》
北大核心
2011年第11期50-53,共4页
Bearing
基金
国家自然科学基金资助项目(51075189)
江苏省高校优势学科建设工程资助项目(PAPD)
关键词
滚动轴承
数学形态学
HHT变换
故障诊断
rolling bearing
mathematical morphology
HHT transform
fault diagnosis