摘要
研究优化伺服控制系统策略,永磁同步电动机(PMSM)的伺服系统优化,可改善电动机系统的稳定性和响应特性。通过提高伺服系统定位精度和抗干扰能力,有效保证机器运行效率。针对传统有速度传感器矢量控制增加了系统复杂度和成本的问题,为优化伺服系统控制结构,提出了一种采用神经网络观测器的伺服系统无速度传感器矢量控制策略。系统中不需要安装传感器来检测PMSM转子位置/速度信号,而是利用神经网络观测器从电机反电动势信号中估算转子位置/速度,从而优化了系统整体结构,减小了系统复杂度。通过对PMSM的伺服系统无速度传感器矢量控制系统的建模与仿真测试,结果表明,所设计的神经网络观测器能够准确估算转子位置/速度,控制系统能够精确跟踪给定转速指令,改进了伺服系统优化控制问题,为实际应用提供了参考。
Optimized control of the permanent magnet synchronous motor(PMSM) based AC serve system can ensure the positioning accuracy and the robust of the serve system,and thus improve the operating efficiency of the machinery.However,the existing vector control method adopts an extra sensor to obtain the rotor speed and position information,which makes the system complex and costly.In order to compact the control system,a new method for the sensorless vector control of serve system is proposed in this paper.The advantage of the proposed control system is that it does not need an extra sensor to obtain the rotor speed and position information.The determination of rotor position and thereby speed are made by estimating back electromotive force(back-emf) using the artificial neural network(ANN) observers.By doing so,the dimensions and cost of the driver system can be reduced.A simulation model was established to carry out the numerical experiments.The test results demonstrate that the proposed control system for PMSM performs well.The speed/position estimation precision is high and the error is acceptable.The system output can track the reference speed correctly,and hence the proposed control system has application importance.
出处
《计算机仿真》
CSCD
北大核心
2011年第11期153-156,共4页
Computer Simulation