期刊文献+

智能观测器在伺服系统控制中的应用 被引量:1

Application Research on Sensorless Vector Control for PMSM Based on Intelligent Observer
下载PDF
导出
摘要 研究优化伺服控制系统策略,永磁同步电动机(PMSM)的伺服系统优化,可改善电动机系统的稳定性和响应特性。通过提高伺服系统定位精度和抗干扰能力,有效保证机器运行效率。针对传统有速度传感器矢量控制增加了系统复杂度和成本的问题,为优化伺服系统控制结构,提出了一种采用神经网络观测器的伺服系统无速度传感器矢量控制策略。系统中不需要安装传感器来检测PMSM转子位置/速度信号,而是利用神经网络观测器从电机反电动势信号中估算转子位置/速度,从而优化了系统整体结构,减小了系统复杂度。通过对PMSM的伺服系统无速度传感器矢量控制系统的建模与仿真测试,结果表明,所设计的神经网络观测器能够准确估算转子位置/速度,控制系统能够精确跟踪给定转速指令,改进了伺服系统优化控制问题,为实际应用提供了参考。 Optimized control of the permanent magnet synchronous motor(PMSM) based AC serve system can ensure the positioning accuracy and the robust of the serve system,and thus improve the operating efficiency of the machinery.However,the existing vector control method adopts an extra sensor to obtain the rotor speed and position information,which makes the system complex and costly.In order to compact the control system,a new method for the sensorless vector control of serve system is proposed in this paper.The advantage of the proposed control system is that it does not need an extra sensor to obtain the rotor speed and position information.The determination of rotor position and thereby speed are made by estimating back electromotive force(back-emf) using the artificial neural network(ANN) observers.By doing so,the dimensions and cost of the driver system can be reduced.A simulation model was established to carry out the numerical experiments.The test results demonstrate that the proposed control system for PMSM performs well.The speed/position estimation precision is high and the error is acceptable.The system output can track the reference speed correctly,and hence the proposed control system has application importance.
作者 胡志江
出处 《计算机仿真》 CSCD 北大核心 2011年第11期153-156,共4页 Computer Simulation
关键词 伺服系统 永磁同步电机 无速度传感器 神经网络 观测器 Servo system PMSM Sensorless Artificial neural network(ANN) Observer
  • 相关文献

参考文献9

二级参考文献42

共引文献13

同被引文献5

  • 1F Abdolluhi, H A Tuleb, R V Putel. A state observer approach to filter stochastic nonlinear differential systems [ C ]. Proceedings of the 9th International Conference on Neural Information Pr - ing (ICONIPOZ) , 2002,4.
  • 2Jin Maolin, Jin Yi, Pyung Hun Chang, Chintae Choi. High-Ac- curacy Tracking Control of Robot Manipulators Using Time Delay Estimation and Terminal Sliding Mode[J]. Int J Adv Robotic Sy, 2011,8(4) : 65 -78.
  • 3Jaywant P Kolhe, Md Shaheed, T S Chandar, S E Talole. Robust control of robot manipulators based on uncertainty and disturbance estimation[J]. Int. J. Robust. Nonlinear Control, 2013,23:104 - 122.
  • 4A N Lakhal, A S Tlili and N Benhadj Braiek. Neural Network Ob- server for Nonlinear Systems Application to Induction Motors [ J ]. International Journal of Control and Automation, 2010,3 ( 1 ) : 1 -11.
  • 5ChenWen - Hua, Donald J Ballance, Peter J Gawthrop. A Nonlin- ear Disturbance Observer for Robotic Manipulators [ J ]. IEEE Transactions on Industrial Electrionics, August 2000,47(4).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部