期刊文献+

常用基本不等式的机器证明 被引量:12

Automated proving of some fundamental applied inequalities
下载PDF
导出
摘要 不等式机器证明问题是智能系统领域的难点和热点问题.借助不等式证明软件BOTTEMA,对若干常用的基本不等式成功地实现了机器证明,包括算术、几何与调和平均不等式、排序不等式、Chebyshev不等式、Bernoulli不等式、三角形不等式及Jensen不等式等.所论不等式含有的变元个数是一个不确定的变量,属于Tarski模型外的不等式类型.机器证明得出的结论有时可能是已知结果的推广,其方法本身对同类不等式有示范性,更多的例子表明了该算法和软件的有效性. The automated proving of inequalities is always a difficult and hot topic in the field of intelligence systems. In this paper, by means of an inequality-proving package called BOTTEMA, the automated proving for some fundamental applied inequalities is successfully implemented. These inequalities include the arithmetic-geometric- harmonic inequality, arrangement inequality, Chebyshev inequality, Bernoulli inequality, triangle inequality, and Jensen inequality, beyond the Tarski model, where the number of variables of the inequality is also a variable. The conclusions obtained from automated proving sometimes may extend the known results; and the method would be of use for analogous types of inequalities. The effectiveness of the algorithm and package is illustrated by some more examples.
作者 杨路 郁文生
出处 《智能系统学报》 2011年第5期377-390,共14页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61070048 60874010) 国家自然科学基金委员会创新研究群体科学基金资助项目(61021004) 国家"863"计划资助项目(2011AA010101) 国家"973"计划资助项目(2011CB302802 2011CB302400) 上海市重点学科建设资助项目(B412) 上海市教育委员会科研创新资助项目(11ZZ37)
关键词 基本不等式 机器证明 不等式证明软件BOTTEMA Tarski模型 fundamental applied inequalities automated proving inequality-proving package BOTFEMA Tarski model
  • 相关文献

参考文献33

  • 1TARSKI A. A decision method for elementary algebra and geometry[ M]. Berkeley, USA: The University of California Press. 1951.
  • 2吴文俊.初等几何判定问题与机械化证明.中国科学 数学,1977,.
  • 3杨路,张景中,侯晓荣.非线性代数方程组与机器证明:非线性科学丛书[M].上海:上海科学教育出版社,1996.
  • 4ARNON D S, COLLINS G E, MCCALLUM S. Cylindrical algebraic decomposition I : the basic algorithm [J]. SIAM Journal on Computing, 1984, 13(4) : 865-877.
  • 5ARNON D S, COLLINS G E, MCCALLUM S. Cylindrical algebraic decomposition II: an adjacency algorithm for the plane [ J ]. SIAM Journal on Computing, 1984, 13 (4) : 878-889.
  • 6BROWN C W. Simple CAD construction and its applications[J]. Journal of Symbolic Computation, 2001, 31 (5) : 521-547.
  • 7COLLINS G E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition [ C ]//Automata Theory and Formal Languages. Kaiserslautern, Germany, 1975 : 134-183.
  • 8COLLINS G E, HONG H. Partial cylindrical algebraic de- composition for quantifier elimination [ J ]. Journal of Symbolic Computation, 1991, 12(3):299-328.
  • 9CHOU S C. Mechanical geometry theorem proving [ M ]. Dordrecht, Holland: D. Reidel Publishing Company, 1988.
  • 10CHOU S C, ZHANG J Z, GAO X S. Machine proofs in geometry: automated production of readable proofs for ge- ometry theorems [ M ]. Singapore : World Scientific, 1994.

二级参考文献67

共引文献95

同被引文献58

引证文献12

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部