期刊文献+

高斯过程及其在高光谱图像分类中的应用 被引量:4

Gaussian process and its applications in hyperspectral image classification
下载PDF
导出
摘要 高光谱遥感图像分类是高光谱成像信息处理的研究热点,高光谱成像的内在特点对于分类器设计具有直接影响.高斯过程是近年来发展迅速的一种新的机器学习方法,具备容易实现、超参数可自适应获取以及预测输出具有概率意义等优点,比较适合于处理图像分类问题.首先对高斯过程的基本概念及其主要的分类算法进行了简要介绍,然后在对高光谱图像分类的特点和高光谱图像分类的研究现状的分析基础上,讨论了基于高斯过程的高光谱图像分类的基本思想,提出了基于空间约束的高斯过程分类和基于半监督高斯过程分类等适合高光谱图像分类的新方法.最后对基于高斯过程的高光谱图像分类研究的发展趋势进行了展望. Hyperspectral image classification is one of the hotspots in the field of remote sensing applications. The classification performance is affected by the inherit characteristics of hyperspectral imaging. Gaussian process (GP) is a recently developed machine learning method which enables explicitly probabilistic modeling and makes results easily interpretable. Furthermore, hyper-parameters of GP can be learned from training data, which overcomes the difficulties of fixing model parameters in most classifiers. This paper introduced the basic concept of GP and some GP-based classification methods. After analyzing the characteristics of hyperspectral imaging and the existing classi- fication methods for hyperspectral images, GP based classification for hyperspectral images was discussed, and some new GP-based classification methods such as GP with spatial constraints and semisupervised GP methods were proposed. Finally, several future research trends of GP and hyperspectral image classification were given.
出处 《智能系统学报》 2011年第5期396-404,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60872071)
关键词 高斯过程 高光谱图像 机器学习 图像分类 Gaussian process hyperspectral imaging machine learning image classification
  • 相关文献

参考文献47

  • 1WIENER N. Extrapolation, interpolation, and smoothing of stationary time series, with engineering applications [ M ]. Cambridge, USA: MIT Press, 1949: 102-106.
  • 2MATHERON G. The intrinsic random functions and their applications [ J]. Advances in Applied Probability, 1973,5 (3) : 439-468.
  • 3JOURNEL A G, HUIJBREGTS C J. Mining geostatistics [ M]. New York, USA: Springer-Verlag, 1978 : 304-310.
  • 4THOMPSON P D. Optimum smoothing of two-dimensional fields[J]. Tellus, 1956, 8(3): 384-393.
  • 5DALEY R. Atmospheric data analysis [ M ]. Cambridge, UK: Cambridge University Press, 1993: 99-107.
  • 6WHITTLE P. Prediction and regulation by linear leastsquare methods [ M ]. London, UK: English Universities Press, 1984: 58-69.
  • 7RIPLEY B D. Spatial statistics [ M ]. Hoboken, USA : Wiley-IEEE, 200d: 44-50.
  • 8CRESSIE N. Statistics for spatial data [ J ]. Terra Nova, 1992, 4(5): 613-617.
  • 9O' HAGAN A, KINGMAN J F C. Curve fitting and optimal design for prediction [ J ]. Journal of the Royal Statistical Society: Series B (Methodological) , 1978, 40(1) : 1-42.
  • 10SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments [ J ]. Statistical Science, 1989, 4(4) : 409-423.

二级参考文献47

共引文献35

同被引文献62

引证文献4

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部