Schnakenberg自催化模型的非常数正解
Non-constant positive solutions of Schnakenberg model
摘要
讨论含有两种反应物的简单的Schnakenberg自催化模型在Neumann边界条件下的相关性质.首先应用谱理论证明了该反应扩散系统的唯一正常数解是一致渐近稳定的;其次应用极大值原理证明该模型在平衡状态下存在上下界;最后应用能量方法得到此模型在齐次Neumann边界条件下不存在非常数正解时扩散系数需满足的条件.
The simple autocatalytic reaction-diffusion system known as Schnakenberg model with the homogeneous Neumann boundary condition is discussed.The uniformly asymptotic stability of the unique constant positive solution is proved by using spectral theory.Then a prior estimate(positive upper and lower bounds) of the positive steady-state is given.At last conditions of nonexistence for non-constant positive solution are given by using energy method.
出处
《天津师范大学学报(自然科学版)》
CAS
北大核心
2011年第3期29-31,共3页
Journal of Tianjin Normal University:Natural Science Edition
基金
"十一五"国家课题资助项目(FIB070335-B2-08)
参考文献10
-
1Iron D, Wei J C, Matthias W. Stability analysis of Toring patterns generated by the Schnakenberg model[J]. J Math Biol, 2004, 49: 358-390.
-
2Madzvamuse A. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains[J]. Journal of Computational Physics, 2006, 214: 239-263.
-
3Gierer A, Meinhardt H. A theory of biological pattern forma- tion[J]. Kybernetik Press, 1972, 12:30 - 39.
-
4Ni W M, Suzuki K, Takagi I. The dynamics of a kinetic acti- vator-inhibitor system[J]. Journal of Differential Equations, 2006, 229:426-465.
-
5Madzvamuse A, Maini P K. Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains[J]. Journal of Computational Physics, 2007, 225: 100 - 119.
-
6Benson D L, Maini P K, Sherratt J A. Untravelling the Toring bifurcation using spatially varying diffusion coefficients[J]. J Math Biol, 1998, 37: 381 -417.
-
7Henry D. Geometric Theory of Semi Linear Parabolic Equa- tions.. Lecture Notes in Mathematics[M]. New York: Springer, 1993.
-
8Wang M X. Stationary patterns for a prey-predator model with prey-dependent and ration-dependent functional responses and diffusion[J]. J Physd, 2004, 196: 172-192.
-
9Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion [J]. Journal of Differential Equations, 1996, 131: 79- 131.
-
10黑力军,王翠芳.具有空间扩散和年龄结构竞争模型的正平衡态[J].系统科学与数学,2008,28(10):1236-1244. 被引量:2
二级参考文献11
-
1Zhang X A, Chen L X and Neumann A U. The stage-structured predator-prey model and optimal harvesting polict. Mathematical Biosciences, 2000, 168: 201-210.
-
2Liu S Q and Chen L X. Recent progress on stage-structured population dynamics. Mathematical and Computer Modelling, 2002, 36: 1319-1360.
-
3Lin Z and Pedersen M. Stability in a diffusive food-chain model with Michaelis-Menten functional response. Nonlinear Analysis, 2004, 57: 421-433.
-
4Wang M X. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion. Physica D, 2004, 196: 172-192.
-
5Lou Y and Ni W M. Dffusin, self-diffusion and cross-diffusion. J. Differential Equations, 1996, 131: 79-131.
-
6Peng R and Wang M X. Positive steady-state solutions of the Noyes-Field model for Belousov- Zhabotinskii reaction. Nonlinear Analysis, 2004, 56: 451-464.
-
7Peng R and Wang M X. Note on a ratio-dependent predator-prey system with diffusion. Nonlinear Analysis RWA, 2006, 7: 1-11.
-
8Takeuchi Y, Oshime Y and Matsuda H. Persistence and periodic orbits of a three-competitor model with refuges. Math. Biosci., 1992, 108(1): 105-125.
-
9Matsuda H and Namba T. Co-evolutionarily stable community structure in a patchy environment. J. Theoret. Biol., 1989, 136(2): 229-243.
-
10Pang P Y H and Wang M X. Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. Roy. Soc. Edinburgh A, 2003, 133(4): 919-942.