期刊文献+

基于核函数的Adaboost分类算法研究 被引量:2

Classification Algorithm of Kernel-based in Adaboost
下载PDF
导出
摘要 Boosting是在统计学习理论的基础上发展起来的一种新的集成机器学习方法,并在模式分类领域有了广泛的应用。该文首先分析了Boosting的原理并介绍了其经典算法AdaBoost方法,分别引入三种核函数(多项式核函数、径向基核函数、Sigmoid核函数)集成AdaBoost算法的弱分类器。然后将其应用于两个关于癌症论断的数据集中,通过实验验证了核函数作为弱分类器集成AdaBoost分类器的良好性能。 Boosting is a new method of ensemble machine learning developed from the theory of Statistical Learning Theory (STL), and it has a great application on the pattern classification field. The theory of Boosting and the classical algorithm of AdaBoost are studied at first, then it is introduced three kinds of kernel function (Polynomial kernel, R.adial Basis Function, Sigmoid kernel function) integrated weak classifier for AdaBoost. Then it applied to two conclusions about cancer data set by experimental verification of a nuclear function as a weak classifier integrates the good performance of AdaBoost classifiers.
作者 李想 李涛 LI Xiang, LI Tao (College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
出处 《电脑知识与技术》 2011年第10期6969-6970,6976,共3页 Computer Knowledge and Technology
关键词 BOOSTING算法 集成学习 核函数 弱分类器 boosting algorithm ensemble learning kernel function weak classifier
  • 相关文献

参考文献8

  • 1Valiant L G.A Theory of the Learnable[J].Communications of the ACM,1984,27(11): 1134-1142.
  • 2Schapire R E.The Strength of Weak Learnability[J].Machine Learning,1990,5(2):197-227.
  • 3Cristianini N,Shawe-Taylor J.An introduction to Support Vector Machines and other kernel-based learning methods [M] Cambridge: Cambridge University Press,2000.
  • 4CristianiniN,Shawe-TaylorJ.支持向量机导[M].北京:电子工业出版社.2004.
  • 5Friedman J,Hastie T,Tibshirani R.Additive logistic regression: a statistics view of boosting[J].Annals of Statistics,2000(28):337-407.
  • 6Ron M.Advanced lectures on Machine Learning[M].New York:Springer-Verlag,2003:118-183.
  • 7Camps-Vails G,Serrano-L6pez A J,G6mez-Chova L, et al.Regularized RBF Networks for Hyperspectral Data Classification[C]//Springer Berlin/Heidelberg,2004.
  • 8沈学华,周志华,吴建鑫,陈兆乾.Boosting和Bagging综述[J].计算机工程与应用,2000,36(12):31-32. 被引量:66

二级参考文献9

  • 11.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 22.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 33.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444
  • 44.Schapire R E.The Strength of Weak Learnability.Machine Learning, 1990;5:197-227
  • 55.Freund Y.Boosting a Weak Algorithm by Majority.Information and Computation,1995;121(2):256-285
  • 66.Freund Y,Schapire R E.A Decision-Theoretic Generalization of On- Line Learning and an Application to Boosting.Journal of Computer and System Sciences,1997;55(1):119-139
  • 78.Schapire R EFreund YBartlett Y,et al.Boosting the Margin:A New Explanation for the Effectiveness of Voting Methods.The Annals of Statistics,1998;26(5):1651-1686
  • 89.Schapire R E.A Brief Introduction of Boosting.InProceedings of the 16th International Joint Conference on Artificial Intelligence,1999
  • 910.Schapire R E.A Brief Introduction of Boosting. In: Proceedings of the 16th International joint Conference on Artificial Intelligence1999

共引文献65

同被引文献66

  • 1张志云,周永丰.基于最小二乘和广义最小二乘的系统偏差估计研究[J].舰船电子工程,2008,28(8):89-91. 被引量:2
  • 2陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 3顾磊,吴慧中,肖亮.一种基于核的模糊多球分类算法及其集成[J].计算机工程与应用,2007,43(27):10-12. 被引量:1
  • 4KUBAT M,HOLTE R C,MATW IN S. Machine learning for the detection of oil spills in satellite radar images[J].Machine Learning,1998,(223):195-215.
  • 5LIU Y H,CHEN Y T. Face recognition using total margin-based adaptive fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2007.178-192.
  • 6JAPKOWICZ N. Learning from Imbalanced Data Sets[A].2000.
  • 7CHAWLA N V,JAPKOWICZ N,KOLCZ A. Workshop Learning from Imbalanced Data Sets Ⅱ[A].Washington DC:AAAI Press,2003.
  • 8CHAWLA N V,JAPKOWICZ N,KOLCZ A. Editorial:Special Issue on Learning from Imbalanced Data Sets[J].ACM SIGKDD Explorations,2004,(01):1-6.
  • 9SUN Y,KAMEL M S,WANG Y. Boosting for Learning Multiple Classes with Imbalanced Class Distribution[A].2006.592-602.
  • 10ABE N,ZADROZNY B,LANGFORD J. An Iterative Method for Multi-Class Cost-Sensitive Learning[A].Washington:IEEE Press,2004.3-11.

引证文献2

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部