期刊文献+

基于稀疏编码和SVM的协同入侵检测

Cooperative intrusion detection system based on sparse coding and support vector machine
下载PDF
导出
摘要 将稀疏编码理论应用于入侵检测,并提出一种将稀疏编码理论和支持向量机结合的入侵检测算法。稀疏性约束同时引入到过完备词典学习和编码过程,学习到的系数作为特征送入到支持向量机进行入侵检测。实验表明,稀疏性具有一定的去噪能力,使得学习的特征更富有判别力。同时实验也验证了所提出的方法能保证较高的检测率和较低的误报率,并且对不平衡数据集有较好的鲁棒性。 The theory of sparse representation is applied to intrusion detection, and an approach based on sparse coding and support vector machine is also proposed for intrusion detection. Sparsity constraints are added to train the over-complete dictionary and encode samples simultaneously. Learned sparse coefficients as features are ted into support vector machine for intrusion detection. Experiments show that the sparsity can remove some noises and make mapping features more discriminative. Meanwhile, experiments also prove our proposed method more effective with higher detection rate and lower ialse alarm rate, especially good robustness in the imbalanced dataset experiment.
作者 崔振 陈柏生
出处 《微型机与应用》 2011年第22期78-81,共4页 Microcomputer & Its Applications
基金 国务院侨办科研基金资助项目(10QZR0) 华侨大学科研基金资助项目(10HZR06)
关键词 稀疏编码 支持向量机 协同 入侵检测 过完备词典 sparse coding SVM cooperation intrusion detection over-complete dictionary
  • 相关文献

参考文献14

  • 1焦从信,王崇骏,陈世福.基于完全无向图的贝叶斯分类器在入侵检测中的应用[J].计算机科学,2008,35(9):83-86. 被引量:4
  • 2姜庆民,吴宁,刘伟华.面向入侵检测系统的模式匹配算法研究[J].西安交通大学学报,2009,43(2):58-62. 被引量:13
  • 3刘衍珩,田大新,余雪岗,王健.基于分布式学习的大规模网络入侵检测算法[J].软件学报,2008,19(4):993-1003. 被引量:46
  • 4刘在强,林东岱,冯登国.一种用于网络取证分析的模糊决策树推理方法(英文)[J].软件学报,2007,18(10):2635-2644. 被引量:12
  • 5CHEN R C,CHEN S P.An intrusion detection based on support vector machines with a voting weight schema [J]. IEA/AIE 2007 : 1148-1157.
  • 6YANG J, YU K, HUANG T.Efficient highly over-complete sparse coding using a mixture model[C].The lhh European Conference on Computer Vision(ECCV), Crete,2010.
  • 7WRIGHT J, YANG A, GANESH A, et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI), 2009,31 (2) : 210-227.
  • 8YANG J ,YU K, HUANG T, et al.Image super-resolution as sparse representation of raw image patehes[C].In :IEEE Conference on Computer Vision and Pattern Recognition,(2008), Anchorage, AK.
  • 9RUBINSTEIN R, BRUCKSTEIN A M,ELAD M.Dictionaries for dparse tepresentation modeling[C].Proceedings of the IEEE, 2010,98(6).
  • 10Aharon M,ELAD M, BRUCKSTEIN A M.The K-SVD: an algorithm for resigning of overcomplete dictionaries for sparse representation[J].lEEE Trans.on Signal Processing 2006,54(11) : 43 11-4322.

二级参考文献40

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部