期刊文献+

改进的交叉算子在遗传算法中的研究及应用 被引量:5

Research and Application of Improved Crossover in Genetic Algorithm
下载PDF
导出
摘要 交叉算子是遗传算子中一个重要的算子,是对双亲个体进行交叉重组得到不同的两个新个体的过程,对遗传算法搜索结果有重要的影响。从交叉概率和交叉策略两个方面可以改进交叉算子,将其应用到函数优化中能获得比典型的遗传算法更优的解,且性能更优。 Crossover operator is one of the important genetic operators, which is the processing of getting two different new individuals by operating parental individuals. It has important influence on the searching results of genetic algorithm. Crossover operator can deliver good genes to the next generation. Improved crossover operator proposed in this paper, which is improved from crossover probability and strategy, can be applied to function optimization. Comparing to the typical genetic algorithm, it has more ootimum Performance. and can get better solutions.
作者 袁桂霞
出处 《江苏广播电视大学学报》 2011年第5期54-57,共4页 Journal of Jiangsu Radio & Television University
关键词 遗传算法 遗传算子 交叉算子 优解 genetic algorithm genetic operators adjacency-based Crossover optimum Solution
  • 相关文献

参考文献6

二级参考文献21

共引文献26

同被引文献44

  • 1邝航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,42(12):93-96. 被引量:96
  • 2马雪英,盛斌奎,叶澄清.用遗传算法的测试用例最小化[J].计算机科学,2007,34(1):285-288. 被引量:8
  • 3卢厚清,陈亮,宋以胜,吴值民,邹赟波.一种遗传算法交叉算子的改进算法[J].解放军理工大学学报(自然科学版),2007,8(3):250-253. 被引量:26
  • 4P Ammann, J Offutt. Introduction to Software Testing[ M ]. Cam- bridge University Press, 2008 : 12 - 154.
  • 5Jones J A, Harrold M J. Test-suit Reduction and Prioritization for Modified Condition/Decision Coverage [ J ]. IEEE Trans on Software Engineering, 2003, 29(3) : 195 -209.
  • 6Lin Chu-ti, Tang Kai-wei, Gregory M Kapfhammer. Test suite re- duction methods that decrease regression testing costs by identifying irreplaceable tests[J], lnfonnation and Software Technology, 2014, 56(I) : 1322 -1344.
  • 7Holland J H. Adaptation in Natural and Artificial Systems: An In- troductory Analysis with Applications to Biology, Control, and Arti- ficial Intelligence[ M ]. Ann Arbor: University of Michigan Press, 1975 : 15 - 67.
  • 8RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems [J]. Computer-Aided Design, 2011, 43(3): 303-315.
  • 9RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems [J]. Information Sciences, 2012, 183(1): 1-15.
  • 10RAO R V, SAVSANI V J, BALIC J. Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems [J]. Engineering Optimization, 2012, 44(12): 1-16.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部