期刊文献+

多区域网格尾迹积分技术在复杂构型气动力计算中的应用研究

The Application of Multi-block Wake Integration Technique to Aerodynamic Computation for Complex Configuration
下载PDF
导出
摘要 文中以绕DLR-F6翼身、翼/身/架/舱组合体流场为算例,研究了多区域网格尾迹积分技术在复杂构型气动力计算中的应用。采用"对角线判断"方法提高了尾迹面插值搜索区的搜索效率。同时,引入了较高精度尾迹插值方法,为气动力的精确计算提供了平台。研究结果表明:采用文中的尾迹积分技术计算复杂构型的气动力有较高的计算效率和精度。 In this paper,taking transonic flow of DLR-F6 wing-body,wing-body-pylon-nacelle configurations as typical computational examples,the application of multi-block wake integration technique to complex configuration was studied."Diagonal estimation" method was proposed to improve search efficiency of wake interpolation area and a wake interpolation method with high precision was introduced to provide an accurate aerodynamic computing platform.The numerical simulation results show that multi-block wake integration technique adopted in this paper can be used to compute aerodynamics for complex configurations with high efficiency and precision.
出处 《弹箭与制导学报》 CSCD 北大核心 2011年第5期135-137,140,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 中国民航飞行学院青年科学基金(Q2008-06)资助
关键词 多区域网格 尾迹积分 NAVIER-STOKES方程 尾迹面插值 multi-block grid wake integration Navier-Stokes equation wake interpolation
  • 相关文献

参考文献7

  • 1Cummings R M, Giles M B , Shrinivas G N. Analysis ofthe elements of drag in three-dimensional viscous and inviscid flows, AIAA-96-2482[R]. 1996.
  • 2Hunt D L , Cummings R M, Giles M B. Determination of drag from three-dimensional viscous and inviscid flowfield computation, AIAA-97 - 2257[R]. 1997.
  • 3ZHU ZiQiang WANG XiaoLu LIU Jie LIU Zhou.Comparison of predicting drag methods using computational fluid dynamics in 2d/3d viscous flow[J].Science China(Technological Sciences),2007,50(5):534-549. 被引量:4
  • 4Van Dam C P , Nikfetrat K. Drag prediction at subsonic and transonic speeds using Euler methods[J] . Journal of Aircraft , 1995 ,32 (4) :839-845.
  • 5Paparone L, Tognaccini R. Computational fluid dynamics-based drag prediction and decomposition[J]. AIAA Journal, 2003, 41 (9): 1647-1657.
  • 6Roe P L. Approximate Riemann solvers, parameter vector and difference schemes [J]. Journal of Computational Physics 1997,135(2) :250-258.
  • 7J Mark Janus, Animesh Chatterjee. Use of a wake-integral method for computational drag analysis[J]. AIAA Journal, 1996, 34(1): 188-190.

二级参考文献22

  • 1[1]Pfeiffer N J.The use of CFD in the design process for configuration drag.AIAA 2000-0380,2000
  • 2[2]Cosner R R.Assessment of vehicle performance predictions using CFD.AIAA 2000-0384,2000
  • 3[3]Peavey C C.Drag prediction for military aircraft using CFD.AIAA 2000-0383,2000
  • 4[4]Lock R C.The prediction of the drag of airfoils and wings at high subsonic speeds.Aeronautical J,1986,90(896):207-226
  • 5[5]Van der Vooren J,Slooff J W.CFD-based drag prediction:state of the art,theory,prospects.NLR TP 90247U,1990
  • 6[6]Vam Dam C P,Nikfetrat K,Wong K.Accurate prediction of drag using Euler equations.J Aircraft,1992,29(3):516-519
  • 7[7]Vam Dam C P,Nikfetrat K,Wong K,et al.Drag prediction at subsonic and transonic speeds using Euler equations.J Aircraft,1995,32(4):839-845
  • 8[8]Janus J M,Chatterjee A.Use of a wake-integral method for computational drag analysis.AIAA J,1996,34(1):188-190
  • 9[9]Cummings R M,Giles M B,Shrinivas G N.Analysis of the elements of drag in three-dimensional viscous and inviscid flows.AIAA 96-2482,1996
  • 10[10]Hunt D L,Cummings R M,Giles M B.Determination of drag from three-dimensional viscous and inviscid flowfield computations.AIAA 97-225,1997

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部