期刊文献+

Analytic solutions of self-similar pulse based on Ginzburg-Landau equation with constant coefficients 被引量:1

Analytic solutions of self-similar pulse based on Ginzburg-Landau equation with constant coefficients
原文传递
导出
摘要 Based on the constant coefficients of Ginzburg-Landau equation that considers the influence of the doped fiber retarded time on the evolution of self-similar pulse,the parabolic asymptotic self-similar solutions were obtained by the symmetry reduc-tion algorithm. The parabolic asymptotic amplitude function,phase function,strict linear chirp function and the effective temporal pulse width of self-similar pulse are given in this paper. And these theoretical results are consistent with the numerical simulations. Based on the constant coefficients of Ginzburg-Landau equation that considers the influence of the doped fiber retarded time on the evolution of self-similar pulse, the parabolic asymptotic self-similar solutions were obtained by the symmetry reduction algorithm. The parabolic asymptotic amplitude function, phase function, strict linear chirp function and the effective temporal pulse width of self-similar pulse are given in this paper. And these theoretical results are consistent with the numerical simulations.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2008年第3期299-306,共8页 中国科学:物理学、力学、天文学(英文版)
基金 the Natural Science Foundation of Guangdong Province of China (Grant No. 04010397)
关键词 gain DISPERSION parabolic asymptotic SELF-SIMILARITY linear CHIRP normal group velocity DISPERSION (GVD) fiber amplifiers gain dispersion parabolic asymptotic self-similarity linear chirp normal group velocity dispersion (GVD) fiber amplifiers
  • 相关文献

参考文献3

二级参考文献24

  • 1Agrawal G P 2002 Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics (Jia D F, Yu Z H, Tan B and Hu Z Y transl. Beijing- Publishing House of Electronics Industry) pl-552
  • 2Rao Me Sun X H and Zhang M D 2003 Chin. Phys. 120502
  • 3Pan L Z and Lu B D 2004 Chin. Phys. 13 0637
  • 4Wang J and Wang Z L 2004 Chin. Phys. 13 0877
  • 5Bakhshi B and Andrekson P A 2000 Electron. Lett. 36325
  • 6Klaus M and Shaw J K 2001 Opt. Commun. 197 491
  • 7Ganapathy R, Kuriakose V C and Porsezian K 2001 Opt.Commun. 194 299
  • 8Desaix M, Helczynski L, Anderson D and Lisak M 2002 Phys. Rev. E 65 056602-1
  • 9Li W, Liu J S , Zeng Z N and Zhang Z Q 2003 Chin. J.Lasers 30 509
  • 10Han W, Wu J H and Wen S C, 2004 J. Optoelectron. Laser15 1452

共引文献12

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部