期刊文献+

C-半群LyapunoV方程的自伴解与稳定性 被引量:2

THE SELF-ADJOINT SOLUTION OF LYAPUNOV'S EQUATION OF C-SEMIGROUPS AND STABILITY
下载PDF
导出
摘要 本文讨论了Hilbert空间上C-半群Lyapunov方程的自伴解,推广了Lyapunov定理,进而给出自伴解渐近稳定的充分条件,并对渐近稳定的C-群的上界作出进一步的估计. In this paper,we discuss the self-adjoint solution of the Lyapunov equation of C semigroups in Hilbert space,which extends a theorem of Lyapunov.Moreover,a sufficient condition for self-adjoint solution of asymptotic stability is obtained and a sharper upper bound of asymptotically stable Csemigroup is given.
出处 《南京大学学报(数学半年刊)》 CAS 2008年第1期86-93,共8页 Journal of Nanjing University(Mathematical Biquarterly)
基金 中国矿业大学科技基金资助(2005B025).
关键词 C-半群 LYAPUNOV方程 自伴算子 渐近稳定 C-semigroups Lyapunov equation self-adjoint operator asymptotic stability
  • 引文网络
  • 相关文献

参考文献1

  • 1K. Veseli?. Exponential Decay of Semigroups in Hilbert Space[J] 1997,Semigroup Forum(3):325~331

同被引文献10

  • 1陈文忠.C-无穷小生成元的表示式[J].厦门大学学报(自然科学版),1993,32(2):135-140. 被引量:22
  • 2A1-Sharif Sh, Khalil R. On the generator of two parameter semigroups [J]. Applied Mathematics and Computation, 2004,156:403-414.
  • 3黄永忠.算子半群与应用[M].武汉:华中科技大学出版社,2011.
  • 4Li Y C, Shaw S Y. On characterization and perturbation of local C-semigroups[J]. Proceedings of the American Mathematical Society, 2007,1(1):1097-1106.
  • 5Shaw S Y, Kuo C C. Generation of local C-semigroups and solvability of the abstract Cauchy problems[J]. Taiwan Residents Journal of Mathematicas, 2005,9(2):291-311.
  • 6HILLE E,PHILLIPS R S.Functional analysis and semigroups[M].New York:Am Math Soc Colloq Public,1957:27-53.
  • 7ARORA S,SHARDA S.On two parameter semigroud of operators[J].New Delhi:University of Delhi,1990:147-153.
  • 8Li Y C,Shaw SY.On characterization and perturbation of local C-semigroups[J].Proceedings of the American MathematicalSociety,2007(1):1097-1106.
  • 9Shaw S Y,KUO C C.Generation of local C-semigroups and solvability of the abstract Cauchy problems[J].Taiwan Residents Jour-nal of Mathematicas,2005,9(2):291-311.
  • 10ALSHARIF Sh,KHALIL R.On the generator of two parameter semigroups[J].Applied Mathematics and Computation,2004,156-.403-414.

引证文献2

二级引证文献12

;
使用帮助 返回顶部