摘要
模M称为直和补的是指M的任何一个子模都有一个是直和项的加补.模M称为H-补的是指,对M的任何一个子模A,都存在一个直和项L,使得A+X=M成立当且仅当M=L+X.本文主要给出了直和补模和H-补模的一些性质刻画.并证明了任何一个直和补模,如果其自同态环H满足Id(H)=S_l(H),则它有一个不可分的分解.
Let M be a module.M is⊕-supplemented if every submodule of M has a supplement that is a direct summand.M is called an H-supplemented module if for a submodule A of M,there exists a direct summand D of M such that A+ X=M holds if and only if M=D+X.In this paper,we obtain some properties, characterizations of⊕-supplemented modules and H-supplemented modules.We also proved that every⊕-supplemented module M with Id(H)=S_l(H) where H=End(M) has an indecomposable decomposition.
出处
《南京大学学报(数学半年刊)》
CAS
2008年第2期149-157,共9页
Journal of Nanjing University(Mathematical Biquarterly)
基金
supported by the National Natural Science Foundation of China (10571026)
the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education (China)
the Specialized Research Fund for the Doctoral Program of Higher Education (20060286006)
关键词
直和补模
H-补模
FI-提升模
⊕-supplemented modules
H-supplemented modules
FI-lifting modules