期刊文献+

基于简化Unscented变换的FMSRUKF算法及其目标跟踪性能分析

The FMSRUKF Algorithm Based on Simplified Unscented Transformation and Its Performance Analysis of Target Tracking
下载PDF
导出
摘要 研究Unscented变换的基本原理及Unscented Kalman Filter(UKF)算法。为了降低跟踪系统计算复杂性,在Unscented变换中引入单位矩阵,以简单的数值计算取代复杂的矩阵分解求解矩阵平方根的过程,把UKF改进为FM- SRUKF。对三维坐标系下的变加速运动目标进行跟踪仿真。结果表明FMSRUKF具有更好的精度和鲁棒性。 This paper presents investigations on the principle of Unscented transformation and UKF (Unscented Kalman Filter) algorithm.To simplify the computing complexity of the tracking system,the identity matrix is introduced into the Unscented transfor- mation,and the complicated matrix calculation is replaced by simple numerical calculation for matrix square root solving,that is FMSRUKF(Fixed Matrix Square Root Unscented Kalman Filter),the improved algorithm of UKF.The simulation results of vari- ably accelerated motion target tracking under three dimensional coordinate show that FMSRUKF achieves better precision and ro- bust.
机构地区 电子科技大学
出处 《遥测遥控》 2008年第6期68-72,共5页 Journal of Telemetry,Tracking and Command
关键词 跟踪 Unscented变换 UKF FMSRUKF Tracking Unscented transformation UKF FMSRUKF
  • 相关文献

参考文献8

  • 1罗涌,钟洪声.一种改进的UKF算法在目标跟踪系统建模中的应用[J].遥测遥控,2008,29(1):55-58. 被引量:2
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 3王长利,刘代志.双曲线定位精度仿真分析[J].核电子学与探测技术,2004,24(3):288-291. 被引量:6
  • 4Georgi M Dimirovski,,Jiahe Xu.UKF Design and Stability for Nonlinear Stochastic Systems with Correlated Noises. Proceedings of the 46th IEEE Conference on Decision and Control . 2007
  • 5Kushner,H. J.Dynamical Equations for Optimal Nonlinear Filtering. Journal of Differential Equations . 1967
  • 6Maybeck P S.Stochastic Models Estimation and Control. . 1982
  • 7Julier S J,Uhlmann J K,Durrant Whyten H F.A newapproach for filtering nolinear system. Proceedingsof the American Control Conf . 1995
  • 8S. J. Julier.The spherical simplex unscented transformation. American Control Conference . 2003

二级参考文献83

  • 1Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 2Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 3Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 4Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 5Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 6Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 7Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 8Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.
  • 9Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482.
  • 10Lefebvre T,Bruyninckx H,De Schutter J.Comment on"a new method for the nonlinear transformation of means and covariances in filters and estimators"[J].IEEE Trans on Automatic Control,2002,47(8):1406-1408.

共引文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部