摘要
Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS us-ing [Fe(CN)6]3-/4- as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10-12 to 1.0×10-8 mol/L DNA and a detection limit of 2.3×10-13 mol/L could be ob-tained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected.
Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS us-ing [Fe(CN)6]3-/4- as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10-12 to 1.0×10-8 mol/L DNA and a detection limit of 2.3×10-13 mol/L could be ob-tained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected.
基金
the National Natural Science Foundation of China (Grant Nos. 20635020 and 20375020)
Doctoral Foundation of the Ministry of Education of China (Grant No. 20060426001)
Natural Science Foundation of Qingdao City (Grant No. 04-2-JZP-8)