期刊文献+

典则TSVD方法的两种有效数值实现方式的比较

The Comparing of Two kinds of Effective Numerical Realization Methods for the Canonical TSVD Method
下载PDF
导出
摘要 典则TSVD方法是求解线性不适定问题的一个好正则化方法,而采用二分法结合反迭代法能有效数值实现典则TSVD方法.选取均匀性的基和继承性的基两种不同的离散基,应用上述方法对同一个问题进行了有效数值实现,结果显示采用均匀性的基进行有效数值实现得到的结果较好. The canonical TSVD method is a good regularized method for solving linear ill-posed problems, and we adopt the bisection method with inverse iteration to effectively realize canonical TSVD method. In this paper, we make use of the above method to effectively realize the same problem by adopting two kinds of seqreqative group. The results show that the numerical results of adopting the symmetrical group are better than the numerical results of adopting the inherited group.
作者 刘智
出处 《伊犁师范学院学报(自然科学版)》 2008年第3期1-6,共6页 Journal of Yili Normal University:Natural Science Edition
关键词 不适定问题 典则TSVD方法 共轭最小二乘法 离散基 ill-posed problems Canonical TSVD method the conjugated least squares method seqreqative group
  • 相关文献

参考文献2

二级参考文献8

  • 1Engl H W,Hanke M,Neubauer A.Regularization of inverse problems[M].Kluwer Academic Publ Dordrecht,1996.117-140; 154-166.
  • 2Hansen P C.The truncated SVD as a method for regularization[J].BIT,1987,27:534-553.
  • 3He Guoqiang.A TSVD form for ill-posed equations leading to optimal convergence rates[A].ICM 2002,Abstracts of Short Communication and Poster Sessions[C].Higher Edu Press,2002.328.
  • 4Dongarra J,Sorensen D.A fully parallel algorithm for the symmetric eigenproblem[J].SIAM J Sci Comput,1987,8:139-154.
  • 5Bunch JR,Nielsen C P,Sorensen D D.Rank-one modification of the symmetric eigenproblem[J].Numer Math,1978,31:31-48.
  • 6Cuppen J J M.A divide and conquer method for symmetric tridiagonal eigenproblem[J].Numer Math,1981,36:177-195.
  • 7宋国乡 甘小冰 王世儒.数值分析[M].西安:西安电子科技大学出版社,1995.154-155.
  • 8徐树芳 高立 张平文.数值线性代数[M].北京:北京大学出版社,2000.218-224.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部