摘要
典则TSVD方法是求解线性不适定问题的一个好正则化方法,而采用二分法结合反迭代法能有效数值实现典则TSVD方法.选取均匀性的基和继承性的基两种不同的离散基,应用上述方法对同一个问题进行了有效数值实现,结果显示采用均匀性的基进行有效数值实现得到的结果较好.
The canonical TSVD method is a good regularized method for solving linear ill-posed problems, and we adopt the bisection method with inverse iteration to effectively realize canonical TSVD method. In this paper, we make use of the above method to effectively realize the same problem by adopting two kinds of seqreqative group. The results show that the numerical results of adopting the symmetrical group are better than the numerical results of adopting the inherited group.
出处
《伊犁师范学院学报(自然科学版)》
2008年第3期1-6,共6页
Journal of Yili Normal University:Natural Science Edition
关键词
不适定问题
典则TSVD方法
共轭最小二乘法
离散基
ill-posed problems
Canonical TSVD method
the conjugated least squares method
seqreqative group