摘要
The matter extracted from palm oil was considered as gasoline additive. The effect of various percentages (0.2%, 0.4% and 0.6%) of the bio-additives on fuel economy of SI engine respectively running on prime gasoline, gasoline with known compo- nents, ethanol gasoline, and methanol gasoline under typical urban operation condition 2000 r/min was investigated. The results showed that the bio-additives can remarkably improve the fuel economy of SI engine while operating on all kinds of fuel. The optimal ratio of bio-additive to gasoline depends on the fuel used and on the different engine operating conditions. Besides, the experiments of constant volume combustion bomb, analysis of in cylinder processes, the synchrotron ra- diation and high-temperature friction were conducted to probe into the mechanism of the bio-additive impact on fuel economy. It indicated that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the frication coefficient.
The matter extracted from palm oil was considered as gasoline additive. The effect of various percentages (0.2%, 0.4% and 0.6%) of the bio-additives on fuel economy of SI engine respectively running on prime gasoline, gasoline with known components, ethanol gasoline, and methanol gasoline under typical urban operation condition 2000 r/min was investigated. The results showed that the bio-additives can remarkably improve the fuel economy of SI engine while operating on all kinds of fuel. The optimal ratio of bio-additive to gasoline depends on the fuel used and on the different engine operating conditions. Besides, the experiments of constant volume combustion bomb, analysis of in cylinder processes, the synchrotron radiation and high-temperature friction were conducted to probe into the mechanism of the bio-additive impact on fuel economy. It indicated that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the frication coefficient.
基金
Supported by the National Natural Science Foundation of China (Grant No. 50376045)