期刊文献+

Migration and enrichment of trace elements of Lower Palaeozoic carbonate rock strata in Beijing 被引量:1

Migration and enrichment of trace elements of Lower Palaeozoic carbonate rock strata in Beijing
原文传递
导出
摘要 Analyses of trace elements of the Lower Palaeozoic carbonate rock strata in Beijing show that the contents of As, Hg, F increase from primary carbonate rocks to weathered carbonate rocks and from primary carbonate rocks to the soil coexisting with carbonate rocks, but the distribution regularity of S is not obvious. In the whole weathered stages, the sorption of As is mainly affected by Fe2O3. In soil Fe2O3 is also the main affecting factor of Hg enrichment. The main existing forms of Hg in primary carbonate rocks should simply be physical adsorption, coprecipitation and false isomorphous form between surface of carbonate rock and Hg. In soil the enrichment of F has little relationship with sul-fides and Fe2O3. In primary carbonate rocks, F is mainly absorbed by sulfides and clay minerals, etc. Weathered samples have closer genetic relationships with primary carbonate rocks. This also implies that weathered carbonate rocks have the close existing forms to that of primary carbonate rocks. In primary carbonate rocks FeS2 and FeS are the main forms of S, and sulfides have fixation effect on some heavy metals, whereas in weathered carbonate rocks and soil the fixation effect is weakened. Analyses of trace elements of the Lower Palaeozoic carbonate rock strata in Beijing show that the contents of As, Hg, F increase from primary carbonate rocks to weathered carbonate rocks and from primary carbonate rocks to the soil coexisting with carbonate rocks, but the distribution regularity of S is not obvious. In the whole weathered stages, the sorption of As is mainly affected by Fe2O3. In soil Fe2O3 is also the main affecting factor of Hg enrichment. The main existing forms of Hg in primary carbonate rocks should simply be physical adsorption, coprecipitation and false isomorphous form between surface of carbonate rock and Hg. In soil the enrichment of F has little relationship with sulfides and Fe2O3. In primary carbonate rocks, F is mainly absorbed by sulfides and clay minerals, etc. Weathered samples have closer genetic relationships with primary carbonate rocks. This also implies that weathered carbonate rocks have the close existing forms to that of primary carbonate rocks. In primary carbonate rocks FeS2 and FeS are the main forms of S, and sulfides have fixation effect on some heavy metals, whereas in weathered carbonate rocks and soil the fixation effect is weakened.
出处 《Science China Earth Sciences》 SCIE EI CAS 2008年第12期1759-1767,共9页 中国科学(地球科学英文版)
基金 the National Basic Research Municipal Program of China (973 Pro-gram)(Grant No. 2006CB202201) Beijing Natural Science Foundation (Grant No. 8063032)
关键词 CARBONATE ROCKS trace elements FE2O3 SULFIDE clay mineral ENRICHMENT carbonate rocks trace elements Fe2O3 sulfide clay mineral enrichment
  • 相关文献

参考文献7

二级参考文献68

共引文献179

同被引文献4

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部