摘要
Heat shock(HS, 40℃, 10 min) induces hypericin production, nitric oxide(NO) generation, and hydrogen peroxide(H2O2) accumulation of Hypericum perforatum suspension cells.Catalase(CAT) and NO spe-cific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(cPTIO) suppress not only the HS-induced H2O2 generation and NO burst, but also the HS-triggered hypericin produc-tion.Hypericin contents of the cells treated with both NO and H2O2 are significantly higher than those of the cells treated with NO alone, although H2O2 per se has no effects on hypericin production of the cells, which suggests the synergistic action between H2O2 and NO on hypericin production.NO treatment enhances H2O2 levels of H.perforatum cells, while external application of H2O2 induces NO generation of cells.Thus, the results reveal a mutually amplifying action between H2O2 and NO in H.perforatum cells.CAT treatment inhibits both HS-induced H2O2 accumulation and NO generation, while cPTIO can also suppress H2O2 levels of the heat shocked cells.The results imply that H2O2 and NO may enhance each other's levels by their mutually amplifying action in the heat shocked cells.Membrane NAD(P)H oxidase inhibitor diphenylene iodonium(DPI) and nitric oxide synthase(NOS) inhibitor S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea(PBITU) not only inhibit the mutually amplifying action between H2O2 and NO but also abolish the synergistic effects of H2O2 and NO on hypericin production, showing that the synergism of H2O2 and NO on secondary metabolite biosynthesis might be dependent on their mutual amplification.Taken together, data of the present work demonstrate that both H2O2 and NO are essential for HS-induced hypericin production of H.perforatum suspension cells.Furthermore, the results reveal a special interaction between the two signal molecules in mediating HS-triggered secondary metabolite biosynthesis of the cells.
Heat shock(HS, 40℃, 10 min) induces hypericin production, nitric oxide(NO) generation, and hydrogen peroxide(H2O2) accumulation of Hypericum perforatum suspension cells.Catalase(CAT) and NO spe-cific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(cPTIO) suppress not only the HS-induced H2O2 generation and NO burst, but also the HS-triggered hypericin produc-tion.Hypericin contents of the cells treated with both NO and H2O2 are significantly higher than those of the cells treated with NO alone, although H2O2 per se has no effects on hypericin production of the cells, which suggests the synergistic action between H2O2 and NO on hypericin production.NO treatment enhances H2O2 levels of H.perforatum cells, while external application of H2O2 induces NO generation of cells.Thus, the results reveal a mutually amplifying action between H2O2 and NO in H.perforatum cells.CAT treatment inhibits both HS-induced H2O2 accumulation and NO generation, while cPTIO can also suppress H2O2 levels of the heat shocked cells.The results imply that H2O2 and NO may enhance each other's levels by their mutually amplifying action in the heat shocked cells.Membrane NAD(P)H oxidase inhibitor diphenylene iodonium(DPI) and nitric oxide synthase(NOS) inhibitor S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea(PBITU) not only inhibit the mutually amplifying action between H2O2 and NO but also abolish the synergistic effects of H2O2 and NO on hypericin production, showing that the synergism of H2O2 and NO on secondary metabolite biosynthesis might be dependent on their mutual amplification.Taken together, data of the present work demonstrate that both H2O2 and NO are essential for HS-induced hypericin production of H.perforatum suspension cells.Furthermore, the results reveal a special interaction between the two signal molecules in mediating HS-triggered secondary metabolite biosynthesis of the cells.
基金
the Natural National Science Foundation of China (Grant No. 30572331)
Natural Science Foundation of Zhejiang Province (Grant No. 302785)