期刊文献+

Experimental investigation of three-dimensional propagation process from surface fault 被引量:1

Experimental investigation of three-dimensional propagation process from surface fault
原文传递
导出
摘要 Experimental study of the formation and propagation of three-dimensional (3D) faults is of great sig- nificance in the understanding of the propagation process developing from initial natural faults. In the study described in this paper, experimental investigations of 3D propagation processes of a type of surface fault are carried out under biaxial compression. The strain field near the surface fault is dy- namically measured and fully analyzed with a high-density Multi-Channel Digital Strain Gauge (MCDSG) and Digital Speckle Correlation Method (DSCM) based on the white-light image analysis. Simultane- ously the micro-fracture process involved in fault formation is observed by a 3D acoustic emission (AE) location system with a set of multi-channel whole-wave record equipment. The experimental results show that the 3D propagation process of surface fault differs greatly from that of the two-dimensional (2D) state and that a new more complicated type of 3D morphological characters and deformation mechanisms are produced. The 3D propagation process of surface faults may be divided into three stages: 1) the first stage of crack propagation initiated by wing cracks; 2) the conversion stage propa- gated by petal cracks; and 3) the second stage of crack propagation formed by shell-shaped fracture surface. The primary propagation patterns of the three stages are different. The corresponding defor- mation fields and micro-fracture distributions are likewise different. The fracture activities from petal cracks especially are of vital importance during surface fault propagation. This is also a key conversion state and marks an intrinsic difference between 2D-like and the 3D state in fault development. Experimental study of the formation and propagation of three-dimensional (3D) faults is of great significance in the understanding of the propagation process developing from initial natural faults. In the study described in this paper, experimental investigations of 3D propagation processes of a type of surface fault are carried out under biaxial compression. The strain field near the surface fault is dynamically measured and fully analyzed with a high-density Multi-Channel Digital Strain Gauge (MCDSG) and Digital Speckle Correlation Method (DSCM) based on the white-light image analysis. Simultaneously the micro-fracture process involved in fault formation is observed by a 3D acoustic emission (AE) location system with a set of multi-channel whole-wave record equipment. The experimental results show that the 3D propagation process of surface fault differs greatly from that of the two-dimensional (2D) state and that a new more complicated type of 3D morphological characters and deformation mechanisms are produced. The 3D propagation process of surface faults may be divided into three stages: 1) the first stage of crack propagation initiated by wing cracks; 2) the conversion stage propagated by petal cracks; and 3) the second stage of crack propagation formed by shell-shaped fracture surface. The primary propagation patterns of the three stages are different. The corresponding deformation fields and micro-fracture distributions are likewise different. The fracture activities from petal cracks especially are of vital importance during surface fault propagation. This is also a key conversion state and marks an intrinsic difference between 2D-like and the 3D state in fault development.
出处 《Science China Earth Sciences》 SCIE EI CAS 2008年第10期1426-1435,共10页 中国科学(地球科学英文版)
基金 the National Basic Research Program of China (Grant No. 2004CB18405) Open Founds of State Key Laboratory of Earthquake Dynamics (Grant No. LED0501 and LED0502)
关键词 surface FAULT 3D PROPAGATION STRAIN field digital SPECKLE acoustic EMISSION surface fault 3D propagation strain field digital speckle acoustic emission
  • 相关文献

参考文献6

二级参考文献45

共引文献205

同被引文献7

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部