期刊文献+

Large Eddy Simulation of a dilute particleladen turbulent flow over a backwardfacing step 被引量:5

Large Eddy Simulation of a dilute particleladen turbulent flow over a backwardfacing step
原文传递
导出
摘要 Dilute gas-particle turbulent flows over a backward-facing step are numerically simulated by Large Eddy Simulation (LES) for the continuous phase and Lagran- gian particle trajectory method for the particle phase. Predicted results of mean velocities and fluctuating velocities of both phases agree well with the experimental data, and demonstrate that the main characteristics of the flow are accurately captured by the simulations. Characteristics of separation and reattachments as well as essential features of the coherent structure are obtained, in which the processes of vortex roll up, growth, pairing and breaking up are shown in details. Particle dispersions are then investigated through particles’ instantaneous distri- butions in coherent structure as well as the mean and fluctuating properties of particle number density (PND). The predicted mean PND agree well with experiment results. For small particles, the instantaneous distributions show much preferential concentration, while their mean PND shows more uniform distribution in down- stream region. On the contrary, for large particles, their instantaneous distributions are much uniform (without clear preferential concentration) due to less effect of large eddy coherent, while their mean PND across the section is not uniform for more particles are distributed in the main flow region. The preferential concentra- tion of particles by the large-scale eddies can lead to a high fluctuating PND. Dilute gas-particle turbulent flows over a backward-facing step are numerically simulated by Large Eddy Simulation (LES) for the continuous phase and Lagrangian particle trajectory method for the particle phase. Predicted results of mean velocities and fluctuating velocities of both phases agree well with the experimental data, and demonstrate that the main characteristics of the flow are accurately captured by the simulations. Characteristics of separation and reattachments as well as essential features of the coherent structure are obtained, in which the processes of vortex roll up, growth, pairing and breaking up are shown in details. Particle dispersions are then investigated through particles’ instantaneous distributions in coherent structure as well as the mean and fluctuating properties of particle number density (PND). The predicted mean PND agree well with experiment results. For small particles, the instantaneous distributions show much preferential concentration, while their mean PND shows more uniform distribution in downstream region. On the contrary, for large particles, their instantaneous distributions are much uniform (without clear preferential concentration) due to less effect of large eddy coherent, while their mean PND across the section is not uniform for more particles are distributed in the main flow region. The preferential concentration of particles by the large-scale eddies can lead to a high fluctuating PND.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第11期1957-1970,共14页 中国科学(技术科学英文版)
基金 the National Natural Science Foundation of China (Grant Nos. 19972036, 50172067) the Research Committee of The Hong Kong Polytechnic University (Grant No. A-DP99)
关键词 two-phase FLOW PARTICLE dispersion Large EDDY Simulation backward-facing STEP FLOW spatially developing FLOW PARTICLE number density two-phase flow particle dispersion Large Eddy Simulation backward-facing step flow spatially developing flow particle number density
  • 相关文献

参考文献1

二级参考文献1

共引文献7

同被引文献70

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部