摘要
This paper contributes to extracting information from signals of broadband ultrasonic attenuation spectrum for effective utilization in particle size characterization. The single particle scattering model and the coupled-phase model are formulated simultaneously, the relationship between particle size distribution and ultrasonic spectrum is established, and a convergence criterion for calculation is quantified. Demonstration inversion by the optimum regularization factor method is carried out to yield typical numerical results for discussion. With the experimental set-up developed by the Institute of Particle and Two-Phase Flow Measurement (IPTFM) at the University of Shanghai for Science and Technology, sand sediment particle size is measured by attenuation spectrum and analyzed using the above inversion algorithm and theoretical models. To validate the proposed ultrasonic spectrum particle sizing method, results are compared with those obtained by microscopy.
This paper contributes to extracting information from signals of broadband ultrasonic attenuation spectrum for effective utilization in particle size characterization. The single particle scattering model and the coupled-phase model are formulated simultaneously, the relationship between particle size distribution and ultrasonic spectrum is established, and a convergence criterion for calculation is quantified. Demonstration inversion by the optimum regularization factor method is carried out to yield typical numerical results for discussion. With the experimental set-up developed by the Institute of Particle and Two-Phase Flow Measurement (IPTFM) at the University of Shanghai for Science and Technology, sand sediment particle size is measured by attenuation spectrum and analyzed using the above inversion algorithm and theoretical models. To validate the proposed ultrasonic spectrum particle sizing method, results are compared with those obtained by microscopy.
基金
National High Technology Development 863 Program(2006AA03Z349)
National Science Foundation of China (50706029)
Shang-hai Education Committee Foundation (07ZZ88)