期刊文献+

基于HHT和AR模型的数据预测方法研究 被引量:2

The Data Prediction Methods Based on Hilbert-Huang Transform and AR Mode
下载PDF
导出
摘要 希尔伯特-变换黄是分析非平稳信号的有效方法,已在信号分析与处理领域得到了广泛应用。希尔伯特-黄变换以经验模态分解为基础,能够将非平稳信号分解成为若干个固有模态分量和一个残余分量。本文提出的基于经验模态分解的数据预测方法,是利用经验模态分解得到的残余分量、并结合AR模型的算法优势,实现对非平稳数据的有效预测。本文利用三种不同的典型数据进行仿真验证,实验结果验证了所提出预测方法的有效性,并给出了影响预测性能的主要因素。 Hilbert-Huang Transform is one of the effective methods to analysis non-stationary signal. It has been widely used in signal analysis and processing domain. Hilbert-Huang Transform is based on Empirical Mode Decomposition. It can decompose one signal into several intrinsic mode functions and one residue component. The data predictive algorithm based on empirical mode decomposition is proposed in this paper. It uses AR mode to analysis residue component to implement data prediction. Three types of data are used in simulation to verify the presented algorithm. The results validate the effectiveness of the algorithm and the influencing factors are analyzed for predictive effectiveness.
出处 《电子测量与仪器学报》 CSCD 2008年第S2期8-12,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金资助项目(编号:60504023)
关键词 希尔伯特-黄变换 AR模型 数据预测 Hilbert-Huang Transform,AR mode,Data prediction
  • 相关文献

参考文献7

二级参考文献57

共引文献128

同被引文献27

  • 1盖强,张海勇,徐晓刚.Hilbert-Huang变换的自适应频率多分辨分析研究[J].电子学报,2005,33(3):563-566. 被引量:35
  • 2钟佑明,秦树人.希尔伯特-黄变换的统一理论依据研究[J].振动与冲击,2006,25(3):40-43. 被引量:55
  • 3LIU SH,ZHANG L Y,LI B.Automatic testing system for power supply line conducted emission based on LabVIEW[C].The International Workshop on Modern Science and Technology 2008,Harbin,China,2008:589-593.
  • 4FRECH A,ZAKARIA A,BRAUN S,et al.Ambient noise cancellation with a time-domain EMI measurement system using adaptive filtering[C].2008 Asia-Pacific Symposium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility,Singapore,2008:534-537.
  • 5OPPENHEIM A V,WILSKY A S,YOUNG I T.Signal and systems[M].USA:Prentice-Hall,Inc.,1993:56-62.
  • 6HUANG J,QIAN X,WANG CH L.The construction of a wavelet filter and its application in environmental research[J].Journal of Nanjing University:Natural Sciences,2007,43(4):389-396.
  • 7HUANG N E.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[M].USA:J.Proc.R.Soc.Lond.A,1998:903-995.
  • 8ZHANG H Y,GAI Q.Research on properties of empirical mode decomposition method[C].Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,12:10001-10004.
  • 9REN SH X,GAO L.Application of a wavelet packet transform based radial basis function neural network to analyze overlapping spectral[C].2008 Congress on Image and Signal Processing,China,2008:214-218.
  • 10LARSEN M L,RIDGWAY J,WALDMAN C H,et al.Transient signal detection using the empirical mode decomposition[J].Advanced Signal Processing Algorithms,Architectures,and Implementations XIV.Franklin T.Luk,Proc.of SPIE,2004,5559:156-171.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部